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ABSTRACT 

Mechanical pipe insulation systems are commonly applied to cold piping surfaces in most industrial and 

commercial buildings in order to limit the heat losses and prevent water vapor condensation on the pipe exterior 

surfaces. Due to the fact that the surface temperature of these pipelines is normally below the ambient dew point 

temperature, water vapor diffuses inside the pipe insulation systems and often condenses when it reaches the pipe 

exterior surfaces. The water droplets accumulated in the pipe insulation system increase its overall thermal 

conductivity by thermal bridging the cells or the fibers of the insulation material. The moisture ingress into pipe 

insulation threatens the thermal performance and the overall efficiency of the building mechanical system. This 

phenomenon is also responsible for the mold growth inside occupied spaces and causes the pipelines to be more 

vulnerable to corrosion. Although a wide range of vapor barriers are used for preventing water vapor penetration 

into pipe insulation, common experience in the field shows that water vapor will inevitably ingress into the 
insulation materials from the end joints or from the cracks created during insulation installation. How to account 

for the moisture ingress on pipe insulation service life and thermal performance is still an open question. 

Thermal conductivity is one of the most important properties for evaluating the thermal performance of the 

pipe insulation systems. Using a new test apparatus, the thermal conductivity of pipe insulation systems below 

ambient temperature and in wet conditions with moisture ingress was measured. Fiberglass and phenolic pipe 

insulation were tested to investigate the moisture effects on the material thermal conductivity. The data showed that 

these two types of pipe insulation systems had quite different water absorption rates due to different characteristics 

of the material and its structure. A serious degradation of fiberglass pipe insulation thermal performance was 

observed and the thermal conductivity increased by as much as 3 times when the moisture content was about 12 

percent in volume. Tested at a different condition, the thermal conductivity of phenolic pipe insulation increased to 

1.6 times of the original value and the moisture content was 5% in volume. Considering the gravity effect, the 
moisture content on the top and bottom C-shells were separately measured and discussed in this paper. 

 

1. INTRODUCTION 
 

Mechanical insulation systems applied to cold piping for refrigeration and de-humidification systems aim to prevent 

extra heat transfer and water vapor condensation on the pipe exterior surfaces. When a chilled fluid pipe is 

inadequately insulated, condensate occurs and keeps accumulating in the materials to threaten insulation thermal 

performance. The water condensate may also drip onto the building surfaces, causing mold growth, while the 

moisture filmed around the pipe surfaces may lead to corrosion on the pipelines, as well as deterioration on the 

service life of the insulation systems. Since cold piping is often used year-round, even with vapor retarder, insulation 

jackets, vapor sealing on the joints and fittings, or the proposed wicking action of hydrophilic fabrics (Crall, 2002; 

Korsgaard, 1993), it is not completely vapor tight and moisture will inevitably accumulate in the permeable 

insulation. 

 
As the cold pipe cools down the surrounding air, moisture infiltrates into the insulation material via two 

thermodynamics processes. Since the saturation vapor pressure decreases with air temperature, there is a water vapor 

pressure gradient from the pipe insulation-air (higher temperature) interface to the aluminum pipe-pipe insulation 
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(lower temperature) interface. It is the pressure gradient that drives a flux of vapor from the outside ambient through 

the insulation material to the low temperature side. If the temperature of the cold surface is lower than the air dew 

point temperature, condensate appears and the water droplets will accumulate next to the cold surface.  

 

Chilled water pipe is one of the most common applications for mechanical pipe insulation systems. It is estimated 

that chilled water piping makes-up 15 to 25% of the piping in the United States. Measurements of the effective 
thermal properties of pipe insulation, by exposing to the same conditions as the field service for chilled water 

applications, have a positive effect to the system design, maintenance and life service. Currently the standard ASTM 

C335 (ASTM, 2010d) is used for measuring the thermal conductivity of cylindrical pipe insulation systems. 

However, this standard is based on a heated pipe, with the heat flow outward, and it is generally applied for 

measurements at above room temperature conditions. When this is applied to an ambient below the room 

temperature, the direction of heat flow should be controlled to be in the opposite direction to that of the flow around 

a cold pipe (Wilkes et al., 2002). In addition, if the pipe is above the room temperature, moisture accumulation and 

water vapor condensation phenomena are virtually absent since the water vapor might be driven outward, that is, 

from the pipe surface to the ambient. Another approach in the literature is to consider the effective thermal 

conductivity of the materials used in pipe insulation systems as the property of the same materials used for 

insulation panels. The thermal conductivity of flat slab materials can be tested based on a number of methods stated 

in the standard (ASTM, 2005a, 2005b, 2010a, 2010b, 2010c). However, due to the effect of the radial configuration 
and split joints (Cremaschi et al., 2012b), it is predicted that the pipe insulation systems would perform differently 

from the flat slab materials. 

 

In the previous work, a novel test apparatus was designed and calibrated to measure the thermal conductivity of 

mechanical pipe insulation systems (Cremaschi et al., 2012b). Fiberglass, elastomeric rubber and phenolic pipe 

insulation were tested on the developed pipe insulation testers (PITs) for temperature effects and linear correlations 

were developed between the insulation thermal conductivity and the insulation mean temperature. The effects of 

joint sealant and of the material wall thickness were also investigated in previous study and it was found that the 

joint sealant augmented the overall thermal conductivity of the pipe insulation system by as much as 15%.  

 

 

2. METHODOLOGY, EXPERIMENTAL APPARATUS AND TEST CONDITIONS 
 

2.1 Methodologies 
According to the literature, guarded hot plate (GHP) and guarded heat flow meter (HFM) are two most common and 
accurate methods designed for the thermal conductivity measurement of flat slab insulation materials (Albers, 2002; 

Bezjak & Zvizdic, 2011; Ohmura, 2007; Salmon & Tye, 2010). For pipe insulation, the methodology is modified 

according to ASTM C335 (2010d), which was published based on radial flow method by considering the flow 

direction and sample orientation. Instead of sandwiched test specimen between guarded hot plate and isothermal 

cold plate, in C335 the test pipe insulation shell is installed around a heated pipe, with thermal guards at the two 

ends of the test section to eliminate the edge effect. In order to measure the thermal conductivity of pipe insulation at 

below-ambient conditions, the heated pipe was replaced with a cold pipe to provide an inward heat flow. 

 

During the measurement of pipe insulation thermal conductivity with moisture ingress, four common strategies exist 

in current research field for providing test specimen with different moisture content. These strategies included: 1) 

immersing the test specimen under flooded conditions with water filling in the gaps and cells among the material 

interior structure and forming a uniform distribution (Chyu et al., 1997a, 1997b; Kaplar, 1974). However, the 
underwater strategy provides a different boundary condition from the real field, and may result in inaccurate 

prediction of the thermal conductivity variation. 2) Spray or inject water directly on the insulation surfaces. 

Although it is true that these two methods provide convenient and fast ways to prepare insulation with certain 

amount of water, the location of wet area which are determined by the specific injection and spray positions would 

become an issue during the thermal conductivity measurement (Kumaran, 1987, 2006; McFadden, 1986; 

Wijeysundera, 1996). 3) Conditioning test specimen in a high humidity ambient. Without temperature and pressure 

gradients between the interior and exterior surfaces of the insulation, the vapor transportation movement is 

insignificant and the moisture accumulation is normally lower than the real application. 4) Simulating condensing 

conditions with temperature and humidity regulated chamber during the thermal conductivity measurement. By 

maintaining the cold surface temperature below the air dew point, pressure gradient drives water vapor from the 

ambient to the cold surface, with water condensate accumulating and diffusing inside the insulation material. This 



3172, Page 3 

 

International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012 

strategy is considered as an effective way to simulate real application in the field in spite of the high cost on the 

equipment control and maintenance. In this paper, the moisture test was processed in a high humidity chamber with 

condensing conditions created across the test specimens.  

 

2.2 Experimental Apparatus 
The experimental apparatus consists of three parts: pipe insulation tester (PIT), refrigeration system and 

psychrometric chamber. Details on the experimental setups and test procedures for dry conditions can be found in a 

previous paper (Cremaschi et al., 2012b). The experimental procedures for wet test were similar to those of dry 

tests. Two pipe insulation samples were installed separately on two pipe insulation testers (PITs) inside the 

psychrometric room at the same time. These two samples were exposed to the identical ambient conditions and 

similar inward heat flux: one sample provided the values of the apparent thermal conductivity with moisture ingress 

(installed on the first PIT) while the other sample provided the moisture content in real time during the period of 

exposure (installed on the second PIT) (Cremaschi et al., 2012a). In order to determine the variation on moisture 

content in the insulation, the test sample on the second PIT was divided evenly into six small pieces so that the 

moisture variation can be determined from six time periods. 
 

2.3 Test Conditions 
To simulate a real chilled water pipe application, the aluminum pipe surface (cold surface) temperature was 

designed to be maintained around 5C (40.5F). During the wet test, the ambient was controlled at a high 
temperature and humidity to accelerate the moisture absorption in the pipe insulation specimens. The ambient 

temperature was set between 36 to 42°C (96 to 107°F), with a relative humidity that ranged from 81 to 87%. 

Different from dry conditions, the uniformity of test specimen surface temperatures was decreased gradually by the 

formation of the wet regions inside the materials, which was caused by the condensate accumulation and 

distribution. The maximum axial temperature difference on the insulation exterior surface increased from 0.5 to 

5.5ºC (1 to 10ºF). Both aluminum pipe and copper tube also showed an increase on the maximum axial temperature 

differences, of 1.7ºC (3ºF) and 0.56ºC (1ºF), respectively.  
 

3. MOISTURE TEST RESULTS 
 

3.1 Moisture Test on 50.8 mm (2 inch) Nominal Wall Thickness Fiberglass Pipe Insulation 
The fiberglass test specimen selected for the moisture test was prepared in a full length of 0.9m (3 ft), with 50.4 mm 

(2 inch) nominal wall thickness. The dry material density was around 80 kg/m3(4.4 lbm/ft3). In order to accelerate 

water vapor intrusion and moisture accumulation into the material, the vapor barrier attached to the exterior surface 

of the fiberglass was removed before installation. Due to the fibrous structure and light-weight characteristic of the 

material, the test specimen was installed in the test section of the first PIT device by placing plastic zip ties around 

the outer shell, instead of applying any joint sealant in the longitudinal direction between the two C-shells. Among 

the 0.15 m (6 inch) sample sections on the second PIT device, the vapor barrier was selected to be plastic film 

sheets, which was expected to prevent any longitudinal moisture diffusion from one sample to the adjacent one. 

However, this plastic film proved to create a preferential path for moisture radial transfer in and out of the fiberglass 

insulation. 

 

Mechanism of moisture diffusion in fibrous insulation 
The test specimen applied on the first and second PIT devices showed different appearances according to the 

observation during the moisture test. For the second PIT device, on which the test specimen was separated to six 

equal length sections for moisture content measurement, a preferential path was formed due to the less dense areas 

between every two 0.15 m (6 inch) samples, together with the partially unsealed gaps and gravity effect. These 

preferential paths played an important role in leading more condensate flow through and drip out from the 

insulation. This mechanism can be validated by the appearance of two wet regions at the ends of the bottom shell for 

each 0.15 m (6 inch) sample. For the first PIT device, the full length test specimen was installed in the test section 

without that many preferential paths in between. Since less portion of the condensate dripped out from the 

insulation, the overall moisture absorption rate determined from the first PIT device is higher than the second PIT 

device. Figure1 shows the development of the wet region on the bottom shell of the fiberglass pipe insulation from 

the first PIT device. Two wet regions appeared in the bottom shell of the test specimen on the 1st day of the moisture 
test and the wet area increased quickly in the following three days. This is because after water vapor penetrates 

through the insulation material and condenses on the cold aluminum pipe surface, the condensate transferred to the 
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exterior surface through the preferential paths based on gravity and material non-uniformity. Due to the surface 

tension effect (Modi & Benner, 1985), instead of dripping out from the pipe insulation, the condensate was stayed 

on the exterior surface and diffused along the fibers which were aligned in the longitudinal direction, forming a 

visible increasing wet area. From the 5th day to the end of the test, that is the 12th day, although it seemed that the 

area of these wet regions did not change significantly from Figure1 (b to d), the moisture was accumulated inside the 

insulation material because the weight of the moisture insulation samples increased. It is postulated that with the 
fibers aligned in the longitudinal direction, moisture would spread horizontally from wet to dry areas preferentially 

via the layers until a quasi-steady state equilibrium was achieved. In this moisture test, the equilibrium was expected 

to reach around the 5th day based on the observation of the wet region formation. Then, instead of a longitudinal 

diffusion, the moisture diffused from the exterior surface to the interior layer of the insulation. However, this 

procedure was difficult to be observed based on current test facilities since there was no visual access along the 

radial direction of the pipe insulation test specimen. Compared to the bottom shell, the top shell showed a much 

lower water amount and none of the visual wet regions was observed on the insulation exterior surfaces. Only 

several condensate droplets were appeared on the interior surface attached to the cold aluminum pipe. This 

suggested that moisture diffused from the cold surface to the interior layers of fibers by gradually coating the fiber 

stands and filling the air gaps of the insulation material along the radial direction. 

 

 
Figure1: Photos of the development of the wet region on the exterior surface of the fiberglass pipe insulation test 

specimen from the first PIT device 

(a) 1 Day

(b) 4 Days

(c) 9 Days

(d) 12 Days

Bottom shell of PIT  1st device
(close to the refrigerant inlet side)

Bottom shell of PIT  1st device
(close to the refrigerant outlet side)
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Thermal conductivity variation with moisture ingress in fibrous insulation 

During the moisture test, visible water droplets were observed dripping onto the floor on the 12th day after the test 

began. With a larger temperature gradient and water vapor pressure gradient applied during the moisture test, this 

result matches with the time length referred in the literature (Modi & Benner, 1985) that the maximum moisture 

content for flat slab fiberglass insulation was estimated to be about 20% of water by volume within 600 hours (15 

days). Once the insulation became partially saturated, the moisture test terminated since the pipe insulation thermal 
conductivity increased so rapidly that the current experimental apparatus was not able to maintain the aluminum 

pipe surface temperature at 4.5°C (40°F).  

 

 
 

Figure 2: Test results on fiberglass pipe insulation systems: a) thermal conductivity variation with time b) thermal 

conductivity ratio (kwet/kdry) with moisture content; c,d) ratio and moisture content with time 
 

Figure 2a shows the variation of moisture content on both first and second PIT devices with the experimental time 

length. It is noted that the two values of thermal conductivity were quite close during the first 5 days of wet test. 

Then the thermal conductivity for the test specimen on the first PIT device increased faster and gradually deviated 

from the data provided by the second PIT device. This behavior suggested that water condensate accumulation in the 

first PIT device was easier than the accumulation in the second PIT device because certain amount of water would 

drip out from the second PIT device, via the preferential radial cuts with plastic film in between, in the pipe 

insulation test specimen. The first PIT device, for which there was no radial cuts present, absorbed the water 

condensate completely in the pipe insulation specimen and performed as more conductive. Figure 2b shows the ratio 

of fiberglass pipe insulation thermal conductivity under wet condensing conditions to the corresponding thermal 

conductivity in dry conditions versus the moisture ingress. The thermal conductivity of test specimen increased with 
moisture content and gradually reached an asymptotic value during the first 15 days. This suggests that during the 

diffusion process in fibrous insulation, the water vapor first fills the voids between the stands with water (Ogniewicz 

& Tien, 1981) and leads to a gradual increase on the material thermal conductivity. After filling the air gaps around 

the strands of glass that lay perpendicular to the heat flux, the water condensate might accumulate on the exterior 

surface in the bottom shell due to surface tension and gravity effects (Modi & Benner, 1985). Water gradually coats 

the exterior fiber surfaces and increases the intersect areas among the strands. The macroscopic effect is higher 

thermal bridging phenomenon that promotes larger heat losses and increases the thermal conductivity of the pipe 

insulation system. The authors postulate that once a quasi-steady state equilibrium is achieved at the exterior 

surfaces, the water that diffuses toward the adjacent inner layer of fibers would decrease to a lower rate because of a 

lower local temperature of the insulation (Langlais et al., 1983). At 12 days after the beginning of the wet test, the 
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overall thermal conductivity of fiberglass pipe insulation increased by more than 3 times of the dry thermal 

conductivity and the moisture content was about 12% in volume. Figure 2c shows the thermal conductivity values 

versus time, in days. The wet test was terminated when there was a visual observation on the large wet regions on 

the exterior surface of the pipe insulation and the test specimen became partially saturated with water droplets 

dripping out onto the floor. 

 
In order to predict that moisture absorption happened in the first PIT device, where only the initial and final values 

of the moisture content were measured based on the experiment strategy, the intermediate values of moisture content 

in the pipe insulation were required to provide a curve for the water content variation. These values were 

extrapolated from the measurements of the test specimen around the second PIT device based on a correction factor 

(CF), which represents the moisture content difference between the two PIT devices with time. On the 12th day of 

the test in wet condition, the maximum moisture absorption in the first and second PIT devices were measured with 

water content about 11% and 8% by volume, respectively (CF=11%/8%=1.4). By assuming a zero moisture content 

for both PIT devices at the beginning of the test (CF=1 at day 0), CF was developed as a linear function according to 

the time (days). It should be noted that this linear format was selected based on the assumption that the moisture 

absorption behaviors of the two test specimens were similar since geometry, temperature boundary conditions, and 

water vapor pressure boundary conditions were identical. The corrected moisture content in the fiberglass pipe 

insulation system that operated in wet, condensing conditions with moisture ingress is shown in Figure 2d. This plot 
provides the data of the moisture content in the top C-shell (circle data points), bottom C-shell (triangle data points), 

and the overall cylindrical section (cross data points). Due to the gravity effect, the moisture content in the bottom 

shell was always higher than the one in the top shell. Water accumulated in the bowl shape of the bottom C-shell 

and large wet regions were visually observed at the bottom surface of the pipe insulation.  

 

3.2 Moisture Test on 50.8 mm (2 inch) Nominal Wall Thickness Phenolic Pipe Insulation 
Phenolic pipe insulation is a closed-cell foam insulation composed of cells with small diameter. For this cellular 

type of insulation, conduction, convection, and radiation heat losses are inhibited from the micro air pockets that 

surround the cells and from the thin cell walls, which decrease the cross-sectional flow path areas (McFadden, 
1988). The phenolic test specimen was tested in a full length of 0.9 m (3 ft), nominal wall thickness of 50.4 mm (2 

inch), and with a density of 50 kg/m3 (3.121 lbm/ft3). Joint sealant was applied along the longitudinal joints of the C-

shells during the installation of phenolic pipe insulation. Considering the rigid surface of phenolic, instead of using 

plastic film as adopted for fiberglass, another type of non-adhesive vapor sealant was applied in between each 0.15 

m (6 inch) long samples, and also at the two ends of the test specimen. Similarly to the previous test, the thermal 

conductivity was measured from the first PIT device while the moisture content was measured from the six small 

test specimens installed on the second PIT device. It need to be noted that moisture measurement was always on a 

pure insulation sample to eliminate the water content in the sealant chemicals, which means that both the joint 

sealant and vapor sealant layer must be removed before weight measurement. 
 

Mechanism of moisture diffusion in cellular insulation 
Figure 3 illustrates the development of the wet regions in phenolic pipe insulation tested on the second PIT device at 

three locations of the bottom shell. Similar to the fiberglass, from the beginning of the test, the wet regions on the 

bottom shell appeared next to the cross sections, near the edges of the vapor sealant, and then slightly increased in 

sizes during the following days. After the 7th day of the test, these wet regions remained unchanged till the end of the 

moisture test (day 24). This phenomenon suggested that moisture was accumulated first next to the cross sectional 

cuts of the insulation. Due to the application of the vapor sealant, instead of dripping out from the test samples, the 

moisture started to diffuse into the insulation systems from these locations. The top shell gradually appeared wet 

around the vapor sealant mastic at about the 10th day of the moisture test. The authors postulate that besides 

condensate, the phenolic insulation also absorbed a small amount of the water from the sealant itself. Both vapor 

sealant and joint sealant are water based and typically need 24 hours to release their moisture content and dry out. 

During this process, the insulation adjacent to the joint sealant might have absorbed part of the moisture released by 

these chemicals. For the phenolic insulation of the first PIT device without cross sectional cuts, there were no visible 
regions of moisture accumulation on the outer surface of the insulation. However, the thermal conductivity increased 

gradually during the wet test, suggesting that moisture did enter the insulation material. At day 24, a small wet spot 

was observed at the bottom surface next to the end side of the insulation specimen which might also be caused by 

the water through the cross sectional cuts and the water released from the joint sealant, as shown in Figure 4. 
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Figure 3: Photos of the progression of the wet regions on the exterior surface of phenolic pipe insulation test 

specimen during the wet test 

 

 
Figure 4:Photos of the wet regions at the bottom surface of the phenolic pipe insulation specimen installed on the 

first PIT and at the day 24 since the wet test 

 

 

 
 

(a) 7 Days

(b) 11 Days

(d) 21 Days

(e) 24 Days

(c) 18 Days

SECTION A

SECTION B

SECTION C

PIT bottom sections
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Thermal conductivity variation with moisture ingress in cellular insulation 

 

 

Figure 5: Test results on phenolic pipe insulation systems: a) thermal conductivity variation with time b) thermal 

conductivity ratio (kwet/kdry) with moisture content; c,d) ratio and moisture content with time 

 

Figure 5a compares the thermal conductivity between the test specimens on the first PIT device and on the second 

PIT device during the moisture ingress test. Unlike the fiberglass pipe insulation, which showed a higher thermal 
conductivity in the first PIT device and lower in the second, the phenolic test specimen on the second PIT device 

was performed to be more conductive. The reason for this different behavior of phenolic pipe insulation detected by 

the developed test apparatus can be explained as follows. Phenolic might be a fairly homogenous insulation material 

and the preferential paths for moisture diffusion in the phenolic test specimen assembled in the apparatus was likely 

to be not as many as the ones observed for the fiberglass test specimen. Besides, due to the characteristic of the 

vapor sealant, it would not only prevent axial moisture diffusion in between two adjacent sections but also stop 

water condensate draining out from the radial cross section. Therefore, the moisture content in test specimen of the 

first PIT device was lower than the one in the test specimen on the second, and led to a lower thermal conductivity. 

Another reason to explain the different thermal behaviors on the first and second PIT devices is that the vapor 

sealant is more conductive, when compared to the insulation materials, and by placing the sealant parallel with the 

pipe insulation around the cold surface, the overall thermal resistance dropped to a lower value. With more thermal 
bridging introduced in the second PIT device, conduction heat loss was slightly promoted with respect to the test 

specimen on the first PIT device. Figure 5a shows a dramatic increase of thermal conductivity of the second PIT 

device around the 19th day of the wet test. This is caused by a sudden increase of heat gain in the refrigeration 

pipelines between the first and second PIT device sections, where the insulations all saturated in the high humid 

environment and resulted in deterioration on the thermal performance. As result of this heat transfer augmentation, 

the surface temperature of the aluminum pipe and copper pipe in the second PIT device increased. The average sand 

temperature (an intermediate medium filled in the aluminum pipe and considered as a heat flow meter with 

calibrated thermal conductivity, referred by Cremaschi et al. (2012a, 2012b)) increased to 8°C (48°F), for which 

accurate calibration curve of sand effective thermal conductivity were not available at that time. After day 24, the 

increase of the surface temperature was so high that the wet test was terminated. 

 

The ratio of thermal conductivity measured at below ambient temperature in wet condensing conditions to the 
corresponding thermal conductivity in dry condition with moisture ingress is shown in Figure 5b. By following 

previous analysis on fiberglass pipe insulation, a correction factor (CF) between the first and second PIT devices 
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was determined based on a similar moisture absorption behavior. However, due to an unexpected heat gain during 

the end of the test, the maximum moisture content in the phenolic test specimen on the first PIT device could not be 

accurately measured. Instead, a maximum value of moisture absorption was selected to be 8% according to the 

literature (ASTM, 2009). By extrapolating from the empirical correlation developed with the data of thermal 

conductivity and moisture content, as shown in Figure 5b, the ratio would be as high as 1.6 at the time the moisture 

content reaches 8% in volume. With a thermal conductivity ratio of phenolic pipe insulation at 1.55 after 24 days, 
the extrapolated experimental length to achieve a thermal conductivity ratio of at least 1.6 was predicted to be 37 

days, see Figure 5c. Figure 5d shows the moisture content in the phenolic pipe insulation, both the top and bottom 

shells, at below ambient temperature and in wet, condensing conditions. Due to a homogeneous configuration, the 

moisture content was fairly uniform between the top and the bottom C-shell sections, with a moisture difference less 

that 10%, which was within the experimental uncertainty. Only for the last data point the bottom C-shell section of 

phenolic pipe insulation had moisture content that was measurably different than the top C-shell section. 

 

6. CONCLUSION 

This paper is a second part of the work on the measurement of pipe insulation thermal conductivity at below-

ambient conditions with moisture ingress. Based on the test apparatus developed and validated in our previous work 

(Cremaschi et al., 2012b), fiberglass and phenolic pipe insulation was continuously tested to investigate the moisture 
effect on the material thermal conductivity. In order to accelerate the moisture intrusion through the insulation 

materials, the ambient conditions were controlled at 42°C (107.6°F) and 35.7°C (96.3°F), with relative humidity 

between 81 to 87%. Based on two experiments with continuous operation for 12 and 24 days respectively, the 

overall thermal conductivity of fiberglass pipe insulation was measured to be increased by 3 times of the original dry 

value with maximum moisture content at 12% in volume. The thermal conductivity of phenolic pipe insulation was 

increased by 1.6 times of the original value and the water content reached 5% by volume. It is emphasized that the 

wet test conditions were intentionally different from each other because the objective was to show the apparatus 

capacities and limitations at various ambient conditions and radial heat flux. Thus a comparison of the thermal 

performance of the two pipe insulation systems tested in wet conditions should not be made due to the different test 

conditions. According to the gravity effect, larger wet regions were always observed on the bottom C-shell surface 

of the test specimen, while the top surface would show smaller or even no wet regions depending on the specific 
applications and material characteristics.  

 

 

NOMENCLATURE 

 
CF: correction factor 

kwet: thermal conductivity at wet condition 

kdry: thermal conductivity at dry condition 

PIT: pipe insulation tester 
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