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GENERAL RESEARCH

Multiphase Equilibrium Calculations Using Gibbs Minimization
Techniques

Y. Sofyan,’* A. J. Ghajar,’ and K. A. M. Gasem*$

School of Mechanical and Aerospace Engineering and School of Chemical Engineering,
Oklahoma State University, Stillwater, Oklahoma 74078

Three different algorithms combining the methodology of Gibbs energy minimization (GEM)
and the iteration function method with an extended phase-check procedure have been developed.
The computational strategies devised in this study attempt to balance algorithm reliability,
simplicity, generalizability, and computational efficiency. As a result, different numerical methods
and improved initialization procedures have been implemented. The efficacy of the three
algorithms is highly dependent on the multiphase system encountered. Specifically, the reliability,
versatility and computational efficiency of the different algorithms vary significantly. A number
of challenging case studies were successfully used to demonstrate the viability of the proposed
algorithms and the initialization procedures. The results of this study indicate that (a) the GEM
algorithm should be applied in demanding process design tasks and (b) the accelerated GEM
algorithms should prove effective in dealing with systems involving a large number of

components.

1. Introduction

Multiphase equilibrium phenomena are encountered
in many industrial applications, such as the production
and processing of crude oil and natural gas, especially
when such operations involve oils prone to wax deposi-
tion or fluid mixtures containing significant amounts
of nitrogen, carbon dioxide, or water. In these applica-
tions and in many others, including food processing,
heterogeneous extraction, and distillation,!2 proper
characterization of the coexisting equilibrium phases is
often critical in determining the economic and engineer-
ing feasibility of the process considered.

Multiphase equilibrium problems can be solved either
by the conventional iteration function methods (IFMs)
or by the Gibbs energy minimization (GEM) techniques.
The IFMs, which are based on the conservation of mass
and the equal-fugacity criterion, will produce a correct
solution only if the number and types of phases present
at a certain temperature, pressure, and composition can
be determined in advance. Furthermore, good initial
guesses for equilibrium constants or mole fractions are
required. These methods always meet the conservation
of mass and equal-fugacity requirements but do not
always attain the minimum Gibbs free energy, as shown
by Heidemann,? Evelein et al.,? and Sorensen et al.# This
sometimes leads to trivial solutions (all phases present
having the same properties) or incorrect phase distribu-
tion predictions.

In the GEM methods, in addition to mass conserva-
tion and the equal-fugacity requirement, the minimum
Gibbs energy is also achieved; consequently, GEM
methods are superior to IFM methods. Two subprob-
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Figure 1. Tangent-plane criterion showing that two two-phase
systems having different compositions (x1'—xv’ and x1,—xv) satisfy
the equal-fugacity criterion for equilibrium. However, the true
solution is the two-phase system with composition x—xv, which
attains the minimum Gibbs energy.

lems, namely, phase stability and phase split, are solved
to obtain a correct solution to the phase equilibrium
problem. Both subproblems can be treated as minimiza-
tion problems or as nonlinear systems of equations.
An important step in multiphase equilibrium calcula-
tions using the GEM methods is to determine the phase
stability, which determines whether a mixture at a
given operating condition will split into multiple phases.
Baker et al.’ showed that the phase stability could be
ascertained by the tangent-plane criterion. Figure 1
shows that two two-phase systems having different
compositions (x1'—xy’ and xp;—xv) satisfy the equal-
fugacity criterion for equilibrium. However, the true
solution is the two-phase system with the composition
x1,—xv, which has the minimum Gibbs energy. The
tangent line that intersects the Gibbs energy surface
also indicates the unstable system. Therefore, the equal-
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Figure 2. Schematic of the tangent-plane eriterion. The negativ-
ity of the tangent-plane distance (D) is used to determine a stable
phase. The points r and y designate a reference composition and
an arbitrary composition, which can be thought of as the feed
composition or the composition of the evaluated phase.

fugacity criterion is a necessary condition, but not a
sufficient one for equilibrium. As described by Mich-
elsen® the stability can be inferred by seeking the
minima of the tangent-plane distance (D), as shown in
Figure 2. Tangent-plane distances are determined by
stationary points (extrema or saddle points in the Gibbs
energy of the system), which are the results of solving
a minimization problem or an equivalent system of
nonlinear equations. If the tangent-plane distance has
a negative value, then that tangent plane intersects the
Gibbs free energy surface, and the phase is unstable.

The main problem in stability analysis is finding all
of the stationary points with complete certainty. This
difficulty triggered significant attempts by several
researchers to develop a reliable method for solving
phase-stability problems. For example, Michelsen® used
multiple initial guesses to solve the system of nonlinear
equations for stationary points. However, this method
cannot guarantee that all of the stationary points have
been found. A homotopy-continuation method was ap-
plied by Sun and Seider.” Two types of initial points for
homotopy paths, which are easier than the initialization
technique used by Michelsen, were applied. The sta-
tionary points are obtained along the homotopy paths.
The area method proposed by Eubank et al is based
on integrating the Gibbs surface. The equilibrium-phase
criterion is defined as the maximum area between the
tangent plane and the Gibbs energy surface and is
obtained by an exhaustive search over a defined grid.
To find the approximate location of solutions, a coarse
grid is first applied. The regions containing viable
solutions are selected, and the regions that provide no
solutions are eliminated. The search for solutions
continues with a finer grid in the remaining regions.
MecDonald and Floudas® demonstrated solution of the
phase-stability problem through the application of
powerful global optimization techniques after they had
reformulated the phase-stability problem for certain
activity coefficient models. Their method does provide
a mathematical guarantee that the global minimum of
the tangent-plane distance will be found. Later, this
work was extended by Harding and Floudas!® to cubic
equation of state models. Hua!! and Hua et al.!? offered
the interval Newton/generalized bisection (IN/GB)
method. This method is initialization-independent, and
if properly implemented, it can produce the correct
solution to the phase-stability problem because it pro-
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vides a guarantee that all stationary points can be
found. Lucia et al.'3 offered an algorithm that employs
a combination of Gibbs energy minimization, binary
tangent-plane analyses, and bubble-point calculations.
A sequence of subproblems (liquid—vapor equilibrium,
liquid—liquid equilibrium, etc.) is solved until the global
minimum Gibbs energy is found. The initial guesses for
a subproblem are generated by solving binary tangent
plane and using previously solved subproblems.

In the present study, the regular Newton’s method,
because of its speed of convergence and simplicity, is
chosen to solve a system of nonlinear equations for
stationary points. A simple initialization scheme is
devised to eliminate the initial guess problem. The only
requirement for the initialization scheme to work is the
knowledge of the upper and lower bounds of the
variables. This information is used to generate nonuni-
form grid points that serve as the locations of initial
guesses. The application of the regular Newton’s method
and the initialization scheme proposed in this work is
relatively easier to program than the IN/GB method
psing the interval Newton approach. This technique is
used to solve seven phase-stability problems consisting
of binary, ternary, and quaternary systems under
conditions that are in the vicinity of the critical region.
The results show that this technique, with a generalized
equation of state, is able to predict the stability of the
system correctly, and they are in excellent agreement
with those obtained by Hua et al.12

To determine the composition and fraction of each
phase in equilibrium, a phase-split analysis is per-
formed. Several researchers have attempted to solve the
phase-split problem using various methods, For ex-
ample, Michelsen'* used the compositions of unstable
phases found from phase-stability analysis as initial
guesses and employed a second-order convergence
method to obtain the solution. Sun and Sieder? con-
structed a set of equations based on equal-fugacity and
mass balance requirements. The stationary points ob-
tained from the phase-stability analysis were employed
as the initial guess, and Newton’s method was used to
solve the set of equations. Hual! combined the IN/GB
method with successive quadratic programming (SQP)
to locate the global minimum of the Gibbs energy. The
stationary points found from the phase-stability analysis
were used as the initial guesses for phase fractions in
solving the minimization problem using SQP.

In this study, the phase-split analysis is performed
by two methods. The first method is to minimize directly
the molar sum of the Gibbs energy of mixing with the
constraints of mass balance and equal fugacity. To
ensure that the solutions attain the global minimum of
the Gibbs free energy, the stability of each prospective
phase found is tested. Then the equilibrium phase
distribution is obtained if each phase is stable. The
second method is to apply the IFM method with the
extended phase-check procedure as suggested by Nel-
son'® and Sofyan.!® The second method is intended to
improve the efficiency of the first method. The station-
ary points found from the phase-stability analysis are
taken as the initial guesses for the mole fractions,

The reliability of these techniques is demonstrated
by solving five test problems involving binary, ternary,
and quaternary systems at several operating conditions
where the system is in liquid—vapor or liquid~liquid—
vapor equilibrium. The results obtained are comparable
to those obtained by Hua!! and Hua et al.,'2 as well as
the p1117blished experimental data provided by Robinson
et al,
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2. Phase-Stability Analysis

Determining the phase stability is a crucial step in
phase equilibrium calculations. It is used to determine
whether a mixture at certain temperature, pressure and
compositions will split into multiple phases. For high-
pressure phase equilibria, the phase-stability analysis
is important, as even simple binary solutions can exhibit
complex phase behavior. '

Mathematically, the tangent-plane distance D shown
in Figure 2 can be expressed as

D) =
n (OAg iy
Agi(%,0), — Ag L (E,0), — 2( 2 ) (x5 — %) (1)

Jj=1 49 °j

where Agmix is the change of Gibbs energy of the
mixture, ¥ is the mole fraction and v is molar volume of
the phases, and 7 is the number of components in the
mixture. The subscripts r and y indicate the evaluation
at a reference composition and at an arbitrary composi-
tion, which can be thought of as the feed composition
or the composition of the evaluated phase.

The van der Waals-type equations of state, such as
the Soave—Redlich—Kwong!8 (SRK) and Peng and Rob-
inson!® (PR), are capable of representing the phase
behavior of normal fluids. In this study, a generalized
cubic equation of state (see, e.g., Reid et al.20) is used

RT i a _
v=0b %4 uby + wh?

pP- 0 (2)

The PR and SRK equations of state (EOS) are
obtained by assigning the values u =2, w = —1 and u
=1, w = 0, respectively.

To determine whether the minimum tangent-plane
distance D is ever negative, the following minimization
problem is undertaken

minimize D(%,v) =

x,v
e aAgmix
B8minl@ )y = A0, — Y| ——| (1, ~ %)
Jj=1 X e
subject to
n
=i
p-EL e 0
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Huall converted the minimization problem given by
eq 3 into a system of nonlinear equations (where n is
the number of components), as shown in egs 4

Using eq 2, the reduced molar Gibbs free energy of
mixing is given by

g lE0) P”+1n(RT)+
L(Ep)=—

a 2v 4+ ub — bA id i
In + S lnax — 52 (5
RTHA (2v+ub+bA) 25tz ,Z{x 2" ©)
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where g;° represents the pure-component reduced molar

Gibbs free energy and A = vVu® — 4w. The pure-com-
ponent reduced Gibbs free energy is expressed by

o _ Pvl RT ai ZUL + ubl e bLA
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and the derivative of the reduced Gibbs free energy with
respect to the mole fraction is written as

a (%_Z) (2v+ub—bA)_
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where
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In this study, the phase-stability analysis is conducted
by solving the system of nonlinear equations given by
eqs 4 using the regular Newton’s method. To obtain
correct solutions, a proper initialization scheme for
iteration variables is required. In this study, an initial-
ization scheme is devised that is based on (a) finding a
feasible domain of the iteration variables and (b)
constructing several grid points as initial guesses in the
physical domain.

3. Initialization Scheme

A careless choice for initial guesses might converge
to a particular solution or a trivial solution, or it might
generate physically meaningless parameters, such as
negative mole fractions.?! To eliminate the initial-guess-
dependence problem, in this study, an initialization
scheme is proposed. This scheme can be applied cor-
rectly only if the feasible domains of iteration variables
are known in advance. Therefore, to solve the system
of nonlinear equations given by eqs 4, the feasible
domain (upper and lower bounds) of the mole fractions

o
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(4)
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Figure 3. Initial-guess locations. The uniform grid shown here
is to illustrate the points of intersections used for initial guesses.

(%) and molar volume (v) need to be obtained. The lower
bound of v is the smallest pure-component size param-
eter b, and the upper bound is the ideal-gas molar
volume; the feasible domain of % is [0, 1].

In this scheme, the physical domains of the iteration
variables are divided into several regions. The initial
guesses are chosen as the points of the intersecting
lines. For example, if the variables are x; and x», the
initial guesses are the black circular points depicted in
Figure 3.

It is possible that the solutions of the system of
nonlinear equations are close to each other. With a
coarse grid, all solutions might not be obtained. To
eliminate this problem, the grid should be refined.
However, such a procedure would produce more initial
guesses and, consequently, would need extra computa-
tional time. In anticipation of this, a nonuniform grid,
as proposed by Patankar,?? is applied in this study. The
grid is generated by applying the formula

ey

where x;, is the location of the kth grid point of variable
%, k is the index denoting the position of x, ¢ is the
number of grid points in the domain x, 7 is any positive
number describing the shape of the nonuniformity, and
« is the range of variable x. When the exponent 7 in eq
8 is greater than 1, the grid is fine near the left end
and becomes progressively coarser toward the right end.
Near the right end, the grid tends to be coarse and
uniform. When 7 < 1, the grid is coarse at the left end
and becomes uniformly fine near the right end. In this
study, both 7 > 1 and 7 < 1 are applied, so that fine
grids at the left and right ends and relatively fine grids
in the middle are constructed.

Because the initial guesses are generated by the
initialization scheme of eq 8, the number of roots or
stationary points obtained depends on the number of
grid points (#) and the nonuniformity shape (z). Our
graphical analysis of the Gibbs free energy curves
reveals that the number of stationary points is always
an odd number. To increase the efficiency of this
method, based on our experience in solving the case
studies, the grids are generated first by setting # equal
to 12. These initial values are used to solve the set of
nonlinear equations given by eqs 4. If the initial values
of the variables used in Newton’s method produces
infeasible values of the variables in the next iteration,
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Figure 4. Flowchart of the phase-stability algorithm.

the next initial guess is used. If all stationary points
cannot be found after all initial guesses have been used,
the number of grid points is increased automatically.
The number of grid points used in the scheme is not
constant but varies depending on the complexity of the
problem.

4. Algorithm for Phase-Stability Analysis

Following is an outline for the phase-stability-analysis
algorithm, as depicted in Figure 4:

1. Calculate the molar volume of each component.

2. Calculate the Gibbs energies for the pure compo-
nents using eq 6.

3. Calculate the molar volume of the mixture using
the equation of state. Note that, if multiple real roots
for the volume exist at the feed composition, the molar
volume at the feed composition (v;) must be the root
yielding the minimum value of the reduced molar
Gibbs energy of mixing as given by eq 5 at the feed
[Agmix(%,0).].

4, Find all stationary points (roots) of the system of
nonlinear equations given by eqs 4 by applying eq 7 and
the regular Newton’s method with the initialization
scheme.

5. Calculate all of the tangent-plane distances (D)
using eq 1. If the D values are all greater than or equal
to zero, the phase is stable. Otherwise, it is unstable,
and we proceed with the phase-split analysis.

5. Phase-Split Analysis

At a given temperature and pressure, for a system
consisting of n components and m phases, the Gibbs free
energy minimization requirement that would satisfy the
material balance and the equal-fugacity criterion can
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be formulated as

minimize AG(E,5,0) = ¥ 0Agk,(E,0)

%,0,4 =1
subject to
EOS'=0 i=1,..,m
m .
ij‘: 1 i=1,.,m
=1
L v
Zaix}=zj Jj=i.,n—-1
=1
m X -
Nai=1 - (9)
i=1

where the superscript i represents the ith phase and o -

is the corresponding phase fraction.

5.1. Algorithms for Phase-Split Analysis Using
Gibbs Energy Minimization. The minimization prob-
lem given by eq 9 could be converted into an equivalent
system of nonlinear equations. The resulting system
could then be solved using the regular Newton’s method
as we did for the phase-stability analysis, but such a
procedure requires a considerable computational effort.
In the case of a three-component and three-phase
problem, such a procedure would require the solution
of a set of 15 x 15 nonlinear equations. For computa-
tional efficiency, in this study, the minimization problem
. given by eq 9 is solved directly using the successive
quadratic programming (SQP) method to locate a local
minimum of the Gibbs free energy. The method trans-
forms the nonlinear problem into a series of quadratic
subproblems and solves the subproblems instead of the
nonlinear problem. A quadratic problem is a problem
with a quadratic objective function and linear or linear-
ized constraints.

To obtain a correct solution to the minimization
problem, the initial guesses for the iteration variables
(%, 7, and @) should be determined accurately. The
stationary points found from the phase-stability analysis
can be effectively used as initial estimates for ¥ and .
However, initial guesses for @ are required. In this
study, the initial guesses for @ are produced in two
ways: (a) by applying the initialization scheme as we
did to initialize the stability analysis and (b) by using
the IFM method originating from the known initial
guesses for %.

To verify whether a global minimum has been reached,
the phase-stability analysis is then used. Once a nega-
tive value for the tangent-plane distance is obtained,
we can immediately conclude that the phase is unstable.

In this study, two algorithms using the Gibbs energy
minimization method are devised. The first algorithm,
called algorithm I, is constructed by generating o using
the initialization scheme, and the second algorithm,
called algorithm II, is developed using @ values that are
obtained from the simple IFM method. Both of the
algorithms are included in the Phase Equilibrium
Calculation (PEC) computer program.

5.1.1. Algorithms I and Il Following is an outline
for phase-split algorithms I and II, as depicted in the
Figures 5 and 6, respectively:

Stabliity Analysis
Stationary Points

nphass = 2

IC,.... combination

nphase = nphase+1{

IC=I1C+1

Figure 5. Flowchart of algorithm I for the phase-split analysis.

IC,. combination
Initial Guess for x and v

nphase = nphase+1

r

Yes
Check Stability of Each
Phase

Stable

Print Solution

Figure 6. Flé)wchart of algorithm II for the phase-split analysis.

1. Take the stationary points found from the phase-
stability analysis as initial guesses.

2. Assume the number of phases m = 2.

3. Generate a set of initial-guess combinations for % and
v (ICpnax). Set the first combination as the initial
guesses for ¥ and v.

4. For algorithm I, generate o,y initial guesses for o
for each combination found from step 3.
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Figure 7. Location of some stationary points that are close to
the equilibrium state. )

For algorithm II, obtain o. using the regular IFM
method.

5. Start the process with the initial guesses for ¥ and
v along with the initial guess for a (for algorithm I,
use the first o).

6. Perform SQP.

a. If no solution is produced by the SQP
For algorithm I, use the next initial guess for o
and go back to step 5. If after Ioyay, no equilib-
rium phase is obtained, go to step 7.
For algorithm II, go to step 7.

b. Otherwise, go to step 8.

7. For algorithms I and II, use the next combination
-for ¥ and v. For algorithm I, use the first initial guess
for a. For algorithm II, calculate o using the new
initial guesses for % and v and go back to step 5.

8. Perform the phase-stability check for each phase.

a. If each phase is stable, the phases in equilibrium
are obtained. Terminate the process.

b. Otherwise

For algorithm I, use the next initial guess for o
and go back to step 5.

For algorithm II, use the next combination for %
and v, obtain a using the regular IFM method,
and go back to step 5.

9. If no equilibrium phase is obtained after ICpay
combinations and Ioum.x initial guesses for o (algo-
rithm I) have been used, then set m = m + 1. The
value of m is restricted by the phase rule (m < n +
2). Go back to step 4.

The phase-stability check in step 8 calculates the
tangent-plane distance directly once the stationary point
is located. If the tangent-plane distance is negative, we
immediately continue the process using the next initial
guess. This strategy might save some computation time.

5.2. Algorithm for Phase-Split Analysis Using
the IFM Method. The IFM method is capable of
producing accurate solutions in a relatively short time,
provided that a good initial guess is made for % As
shown in Figure 7, some of the stationary points
produced by the phase-stability analysis are close to the
equilibrium phase distribution. Therefore, the station-
ary points can be used as good initial guesses for the
IFM method. Algorithm III, which is the combination
of the phase-stability analysis and the IFM method, is

Ind. Eng. Chem. Res., Vol. 42, No. 16, 2003 3791

Stabllity Analysis
Stationary Paints

1C, Combination

Yes
¥
| G, =G
Store x,v,0t

}—»‘; IC=IC+1

( Print Solution )

Figure 8. Flowchart of algorithm III for the phase-split analysis.

devised to incorporate the advantages of the IFM
method. Further, to eliminate the unnecessary calcula-
tions for the higher number of phases, the IFM method
is enhanced by the phase-check procedure suggested by
Nelson'6 and Sofyan.’6 A summary of the liquid—liquid—
vapor phase-check procedure is given in Appendix A.

To ascertain that the global minimum of Gibbs free
energy is attained, the initial guesses generated from
the combination of stationary points are all applied. For
each initial guess, the Gibbs free energy is calculated
and stored. The equilibrium phase distribution is then
obtained as the solution having the lowest Gibbs free
energy.

Following is an outline for algorithm III, as depicted
in Figure 8:

1. Take the stationary points found from the phase-
stability analysis as the initial guesses.

2. Generate ICnpqx combinations of the initial guesses.

3. Assign a large value for the minimum Gibbs energy.

4. Start with the first combination as the initial guess
for %.

5. Perform the phase-check procedure.

6. Calculate the total Gibbs energy.

7. If the calculated Gibbs energy is less than the
assigned value of the Gibbs energy, then set the
calculated Gibbs energy as the minimum Gibbs energy;
store the calculated %, v, and «; use the next combination
for %; and go back to step 5.

8. After ICyax combinations, print %, v, and o and
terminate the process.

6. Results of Implementing the Phase-Stability
and Phase-Split Algorithms

A computer program written in Fortran 90 called
Phase Equilibrium Calculation (PEC) that incorporates
the phase-stability and phase-split algorithms discussed
above has been developed. Eleven challenging case
studies from the literature were selected to test the
reliability of the PEC algorithm. These case studies
involve phase-stability and phase-split problems for
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Table 1. Critical Properties and Acentric Factors Used

T (K) P, (bar) 1)
hydrogen sulfide 373.2 894 0.1
nitrogen 126.2 33.9 0.04
carbon dioxide 304.2 73.8 0.225
water 647.3 220.5 0.344
methane 190.6 46 0.008
ethane 305.4 48.8 . 0.098
propane 369.8 42,5 0.152

vapor—Hquid, liquid—liquid, and liquid—liquid—vapor
systems consisting of two, three, or four components,
In addition, some case studies reflect conditions that are
close to the critical region and in the proximity of the
three-phase region, where phase equilibrium calcula-
tions are known to be very demanding. It should be
noted that the results of the phase-split analysis are
given for some of the unstable systems identified by the
phase-stability analysis. '

The critical temperature (7%), critical pressure (Po),
and acentric factor (w) of each component evaluated are
given in Table 1. Table 2 presents the binary interaction
parameters for the evaluated case studies as compiled
by Hua!! and Trebble and Bishnoei.??® The numbers in
parentheses in Table 2 signify the case study numbers.

The entry function evaluation (FE) in Tables 3—9
signifies the number of times the system of nonlinear
equations was visited using PEC to locate all of the
stationary points. In the same tables, for the IN/GB
method, the number of root inclusion tests (RIT) that
were performed using constrained space plus monotonic
interval extension (FEM) to find all of the stationary
points are also listed. The CPU times in the tables
reflect the times required for the calculations on an
AMD 400-MHz machine.

Case Study 1. Table 3a presents the phase-stability
analysis for the binary system consisting of hydrogen
sulfide (1) and methane (2) at 190 K and 40.53 bar using
the SRK equation of state. As indicated, our stability-
analysis results for several feed compositions are identi-
cal to those obtained by Hua et al.l? using the IN/GB
method.

The PEC algorithm using generated initial guesses
predicts that the feed composition with z; = 0.0187 is
an unstable single phase with a glebal minimum at x;
= 0.0767. This is in contrast to the stable single-phase
prediction produced by the highly reliable LNGFLASH
approach (based on Michelsen’s® algorithm from the
IVC—SEP package?®%). This indicates that, in this case,
PEC is perhaps more reliable than LNGFLASH.

The unstable feeds of this case study are subjected to
the phase-split analysis. The results of PEC along with

Table 2. Matrix for the Binary Interaction Parameters Used

those of Huall are presented in Table 3b, where « is
the phase fraction of the corresponding phase at equi-
librium. As shown in Table 8b, PEC produces results
similar to those of the INTFLASH algorithm of Hua.l!
Figures 9 and 10 depict the results of the split analysis.
In Figure 9, the tangent line at the first equilibrium
composition x; = 0.0173 is also tangent at the second
equilibrium composition x; = 0.0661, and similarly in
Figure 10, the tangent line at the first equilibrium

composition x; = 0.0797 is also tangent at the secon

equilibrium composition x; = 0.8886. As expected, these
tangent lines satisfy the equal-fugacity criterion.

Case Study 2. Table 4 presents a comparison for the
phase-stability analysis of the binary system consisting
of methane (1) and propane (2) at 277.6 K and pressures
of 50 and 100 bar using the SRK equation of state. PEC
predicts an unstable single phase at 100 bar for the feed
compositions z; = 0.68 and 0.73. These results are
identical to those obtained by Hua et al.!2 In compari-
son, Michelsen’s® algorithm incorrectly predicts a stable
single phase under these conditions, which indicates
that a good initialization strategy is required to predict
the proper phase-stability conditions.

Case Study 3. The phase stability of the binary
system consisting of nitrogen (1) and ethane (2) at 270
K and 76 bar was analyzed using the PR equation of
state. The given temperature and pressure are near the
critical region of the mixture. Several feed compositions
were tested, and a comparison of the results is shown
in Table 5a. The results we obtain with PEC agree very
well with those of Hua et al.!2 Also, the phase predic-
tions given by PEC are comparable to the results
reported by Prausnitz et al.25

Table 5b presents the phase-split analysis for the
unstable feed compositions identified by the phase-
stability analysis. The PEC predictions are in excellent
agreement with those of Hua.ll

Case Study 4. The phase stability of the binary
system consisting of carbon dioxide (1) and methane (2)
at 220 K and 60.8 bar was analyzed using the PR
equation of state. The results of our analysis for several
feed compositions are shown in Table 6. The table
indicates that PEC predictions are comparable to those
generated by IN/GB.!? Independently, these two sets of
predictions reproduce the stability analysis given by
Prausnitz et al.?b

Case Study 5. Table 7 summarizes the phase-
stability analysis for the ternary system consisting of
nitrogen (1), methane (2), and ethane (3) at 270 K and
76 bar, which was analyzed using the PR equation of
state. Results for the four feed compositions tested,

Peng—Robinson Equation of State

hydrogen sulfide

hydrogen sulfide
nitrogen
carbon dioxide

Soave—Redlich—Kwong
Bquation of State
water

methane 0.08
o))
propane

nitrogen carbon dioxide water methane ethane
0.0999 0.04 0.0755
6,7 (7 6,7
0.038 0.08
(5) 3,5

(2)
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Figure 9. Results of the phase-split calculations for case study 1
depicting vapor—liquid equilibria.
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Figure 10. Results of the phase-split calculations for case study
1 depicting liquid—liquid equilibria.

along with those obtained by Hua et al.,'2 are presented,
which indicate that the first two feed compositions are
not stable. The phase predictions obtained using PEC
are in agreement with the experimental data given by
Prausnitz et al.?% Although the second and the third feed
compositions are in the proximity of the critical point
of the system, PEC efficiently produced the correct

solutions.

Case Study 6. The phase stability of the ternary
system consisting of methane (1), carbon dioxide (2), and
hydrogen sulfide (3) was analyzed using the PR equation
of state. The four feed compositions studied by Sun and
Seider” using their HOMPEQ solver were considered.
Our stability-analysis results, along with those ohtained
by Hua,!! are presented in Table 8. The present predic-
tions show a 5% maximum deviation from those ob-
tained by Sun and Seider.” For the first feed composition
at 208.5 K and 55.1 bar, five stationary points were
located, three of which were very close to each other.
Without a robust initialization strategy, those points
would have been difficult to locate. In this study, the
proposed initialization scheme with a nonuniform grid
was successfully employed to differentiate the solutions
that are close to each other.

Case Study 7. Table 9a presents the phase-stability
analysis for the quaternary system consisting of meth-
ane (1), carbon dioxide (2), hydrogen sulfide (3), and
water (4), which was analyzed using the PR equation
of state. Four feed compositions were tested. Our
predictions generated using PEC are in excellent agree-
ment with those reported by Hua.l! In addition, the
determination that this system is unstable at each of
the conditions given is in good agreement with the
experimental data provided by Huang et al.28

Table 9b reports the phase-split analysis for the
unstable feed compositions of this case. As shown, there
is a little difference in the results predicted by PEC and
by the IN/GB method of Hua.!! This is probably due to
the difference in the convergence criteria and the
tolerances used. The results for the feed compositions
yielding two-phase equilibrium are very close to the
experimental data given by Huang et al.26

Case Study 8. PEC was used to analyze the phase
split of the ternary system consisting of methane (1),
carbon dioxide (2), and hydrogen sulfide (3) using the
SRK equation of state. This problem was formulated
from experimental data reported by Robinson et al.l?
The feed composition z = (0.50, 0.25, 0.25) was analyzed
at different temperatures and pressures. The results,
presented in Table 10, indicate that predictions of PEC
are comparable to the experimental data.

Case Study 9. The phase split for the ternary system
consisting of methane (1), carbon dioxide (2), and
hydrogen sulfide (3) was analyzed using the PR equation
of state. The binary interaction parameters, as given

Table 4. Case Study 2: Phase-Stability Analysis for the Binary System of Methane (1) and Propane (2) at 277.6 K Using
the SRK Equation of State (P in bar)

feed (P, 21, 22)

roots (x1, x2, U)

distance

IN/GB

PEC

(50, 0.10, 0.90)
(50, 0.40, 0.60)

(50, 0.60, 0.40)

(50, 0.9, 0.10)
(100, 0.40, 0.60)
(100, 0.68, 0.32)

(100, 0.78, 0.27)

(100, 0.9, 0.10)

(0.10, 0.90, 86.71)
(0.8654, 0.1346, 378.4)
(0.5518, 0.4485, 115.3)
(0.40, 0.60, 89.46)
(0.7058, 0.2942, 313.0)
(0.60, 0.40, 216.5)
(0.1928, 0.8072, 86.07)
(0.90, 0.10, 388.5)
(0.40, 0.60, 82.22)
(0.7721, 0.2279, 126.0)
(0.6881, 0.3119, 103.0)
(0.68, 0.32, 101.4)
(0.7567, 0.2433, 121.1)
(0.73, 0.27, 113.2)
(0.6506, 0.3494, 96.38)
(0.90, 0.10, 165.2)

(0.10, 0.90, 86.71)
(0.8655, 0.1345, 378.4)
(0.5516, 0.4484, 115.3)
(0.40, 0.60, 89.45)
(0.7061, 0.2940, 313.2)
(0.60, 0.40, 216.4)
(0.1928, 0.8072, 86.07)
(0.90, 0.10, 388.5)
(0.40, 0.60, 82.22)
(0.7724, 0.2276, 126.1)
(0.6877, 0.3123, 102.9)
(0.68, 0.32, 101.4)
(0.7570, 0.2430, 121.2)
(0.73, 0.27, 113.2)
(0.6503, 0.3497, 96.33)
(0.90, 0.10, 165.2)

@ RIT = root inclusion test-? FE = function evaluation.

INGB PEC PECCPU
IN/GB PEC RITe FEb time (s)
0.0 0.0 587 637 0.11
—0.153 —-0.153 1169 1010 0.11
0.0106 0.0106
0.0 0.0
—0.007 —0.007 1091 1001 0.17
0.0 0.0
—0.223 —0.223
0.0 0.0 878 813 0.11
0.0 0.0 680 710 0.11
—3.3 x 10 -38.3 x 10~ 3334 3754 0.22
4.10 x 1077 3.49 x 1077
0.0 0.0
—2.0 x 1075 —2.1 x 1075 2693 1320 0.17
0.0 0.0
—2.9 x 104 —-2.9 x 10
0.0 0.0 685 965 0.17
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Table 6. Case Study 4: Phase-Stability Analysis for the Binary System Carbon Dioxide (1) and Methane (2) at 220 K and
60.8 bar Using the PR Equation of State

roots (x1, x2, ) distance IN/GB PEC PEC CPU
feed (21, 22) IN/GB PEC IN/GB PEC RIT¢ FEP time (s)
(0.10, 0.90) (0.10, 0.90, 168.5) (0.10, 0.90, 168.5) 0.0 0.0 762 1096 0.16
(0.20, 0.80) (0.20, 0.80, 141.6) (0.20, 0.80, 134.3) 0.0 0.0 2141 1125 0.22
(0.2589, 0.7411, 88.51) (0.2589, 0.7411, 88.51) 0.0022 0.0022
(0.4972, 0.5028, 47.98) (0.4972, 0.5028, 47.99) —0.007 =0.007
(0.30, 0.70) (0.1848, 0.8152, 141.6) (0.1848, 0.8152, 141.6) —0.007 0.007 2478 1199 0.22
(0.30, 0.70, 69.79) (0.30, 0.70, 69.79) 0.0 0.0
(0.3579, 0.6421, 59.13) (0.3579, 0.6421, 59.13) —1.9 x 104 —1.9 x 104
(0.43,0.57) (0.1912, 0.8088, 138.7) (0.1912, 0.8088, 138.7) —0.001 —0.001 2276 1167 0.22
(0.2732, 0.7268, '79.62) (0.2732, 0.7268, 79.62) 0.0032 0.0032
(0.48, 0.57, 52.14) (0.43, 0.57, 52.14) 0.0 0.0
(0.60, 0.40) (0.60, 0.40, 43.69) (0.60, 0.40, 43.69) 0.0 0.0 1880 2489 0.44

@ RIT = root inclusion test. ® FE = function evaluation.

Table 7. Case Study 5: Phase-Stability Analysis for the Ternary System Nitrogen (1), Methane (2), and Ethane (3) at 270
K and 76 bar Using the PR Equation of State

feed (21, 29, 23)

roots (x1, xg, %3, V)

distance

IN/GB

PEC

(0.30, 0.10, 0.60)
(0.15, 0.30, 0.55)

(0.08, 0.38, 0.54)
(0.05, 0.05, 0.90)

(0.312, 0.102, 0.587, 153)

(0.300, 0.100, 0.600, 147)

(0.133, 0.068, 0.799, 77.5)
(0.150, 0.300, 0.550, 132)

(0.147, 0.297, 0.556, 130)

(0.097, 0.245, 0.658, 90.3)
(0.080, 0.380, 0.540, 120)
(0.050, 0.050, 0.900, 69.6)

(0.312, 0.102, 0.587, 153)
(0.300, 0.100, 0.600, 147)

(0.133, 0.068, 0.799, 77.5)

(0.150, 0.300, 0.550, 132)
(0.147, 0.297, 0.556, 130)

(0.097, 0.0245, 0.658, 90.2)

(0.080, 0.380, 0.540, 120)
(0.050, 0.05, 0.900, 69.6)

@ RIT = root inclusion test. » FE = function evaluation.

IN/GB PEC PECCPU
IN/GB PEC RIT¢  FE? time (s)
~58x 106 —58x10°6 5498 4973 4.28
0.0 0.0
—0.0148 —0.0148
0.0 0.0 13421 6312 5.94
3.55 x 1077 3.61 x 1077
—0.0012 —0.0012
0.0 0.0 10207 5891 6.15
0.0 0.0 2514 2579 3.24

Table 8. Case Study 6: Phase-Stability Analysis for the Ternary System Methane (1), Carbon Dioxide (2), and Hydrogen
Sulfide (3) Using the PR Equation of State (T in K and P in bar)

roots (x1, xa, x3, U)

distance

feed IN/GB PEC PECCPU

(P, T, 21, 29, 23) IN/GB PEC IN/GB PEC RIT+ FE? time (s)
(65.1, 208.5, (0.919, 0.034, 0.047, 154)  (0.919, 0.034, 0.046,143) —1.5 x 102 -1.5x 102 16328 3997 4.39
0.4989, 0.0988, (0.859, 0.051, 0.090, 75.1)  (0.859, 0.051, 0.090, 75.1) 9.4 x 103 ~9.5 x 1073
0.4023) (0.817, 0.060, 0.123, 61.8)  (0.817, 0.060, 0.123,61.8) —9.7 x 10-3 —9.7 x 1073

(0.245, 0.091, 0.664, 35.3)  (0.245, 0.091, 0.664, 35.3) —6.8 x 1073 —6.8 x 1078

(0.499, 0.099, 0.402, 40.0)  (0.499, 0.099, 0.402, 40.0) 0.0 0.0
(67.5, 210.5, (0.911, 0.037, 0.052, 134)  (0.911, 0.037, 0.052, 134)  —0.013 —0.013 16954 4411 4.94
0.4989, 0.0988,  (0.255, 0.092, 0.653, 35.6)  (0.255, 0.092, 0.653, 35.6) —5.7 x 1073 —5.7 x 1073
0.4023) (0.499, 0.099, 0.402, 40.4)  (0.499, 0.099, 0.402, 40.4) 0.0 0.0
(57.5, 210.5, (0.903, 0.045, 0.052,129)  (0.903, 0.045, 0.053, 129) —5.5 x 1078 —5.5x 1078 20046 4363 5.06
0.48, 0.12, (0.862, 0.057, 0.081, 84.1)  (0.862, 0.057, 0.081, 84.1) —3.7 x 1073 -8.7 x 1073
0.40) . (0.767, 0.081, 0.152, 56.1)  (0.767, 0.081, 0.152,56.1) —5.5 x 1073 —5.5 x 1073

(0.290, 0.117, 0.593, 36.2)  (0.290, 0.117, 0.594, 36.2) —2.2 x 1073 -2.2 x 1073

(0.48, 0.12, 0.40, 40.1) (0.48, 0.12, 0.40, 40.1) 0.0 0.0
(48.6, 227.55, (0.900, 0.041, 0.059, 271)  (0.900, 0.041, 0.059, 271)  —0.185 —0.185 8695 3847 4.34
0.4989, 0.0988,  (0.278, 0.094, 0.628, 38.0)  (0.278, 0.094, 0.628, 38.0) 355 x 1077 -52x 1073
0.4023) (0.499, 0.099, 0.402, 40.4)  (0.499, 0.099, 0.402, 45.1) 0.0 0.0

¢ RIT = root inclusion test. ¥ FE = function evaluation.

by Oellrich et al.,2” are k13 = 0.12, k13 = 0.08, and kg3 =
0.12. This problem was formulated from the experimen-
tal data given by Robinson et al.1? The feed composition
z = (0.4989, 0.0988, 0.4023) was analyzed at the listed
temperatures and pressures. For the above feed condi-
tion, only two equilibrium phases were obtained, instead
of the three phases indicated by the experimental data.
To reconcile this difference, we had to either lower the
pressure or adjust the binary interaction parameters.
Specifically, three phases in equilibrium were located
using an adjusted set of binary interaction parameters
(i.e., kg = 0.13, k13 = 0.095, and kgy = 0.097). This
indicates that the binary interaction parameters gener-
ated from vapor—liquid equilibrium data, at times,
produce incorrect phase splits and/or poor phase com-
positions for liquid—liquid—vapor and other phase

combinations. The results of applying the adjusted
binary interaction parameters are shown in Table 11.

7. Discussion of Results

The ability to find all stationary points or roots of a
system of nonlinear equations is vital in determining
the phase stability. In this study, the regular Newton’s
method with a proposed initialization scheme was
utilized.

Phase-stability-analysis results of some challenging
problems indicate that our technique was able to predict
accurately the stability of the mixtures at selected
temperatures, pressures, and compositions as shown in
Tables 3—11. From these tables, we can see that the
results obtained using PEC are identical to those
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Table 10. Case Study 8: Phase-Split Analysis Results for the Ternary System Methane (1), Carbon Dioxide (2), and

Hydrogen Sulfide (3) Using the SRK Equation of State for z = (0.5, 0.25, 0.25) (T in °F and P in psia)

(P, T)

phase I (liquid)

PEC

data

(1114.0, 39.2)
(1380.0, 39.38)
(511.1, —0.4)
(895.0, 0.94)
(1233.0, —0.4)
(251.1, —50.8)
(596.0, —51.3)
(822.0, —51.5)
(134.1, -101.2)
(346.4, —100.6)
(510.4, —100.5)

(0.1818, 0.2598, 0.5586)
(0.2967, 0.2771, 0.4261)
(0.0657, 0.2075, 0.7267)
(0.1892, 0.3096, 0.5012)
(0.3659, 0.2890, 0.3451)
(0.0394, 0.2378, 0.7228)
(0.1716, 0.3597, 0.4687)
(0.3092, 0.3236, 0.3673)
(0.0353, 0.3622, 0.6025)
(0.1363, 0.4027, 0.4610)
(0.2683, 0.3533, 0.3784)

(0.1792, 0.27460.5462)

(0.2764, 0.2861, 0.4375)
(0.0645, 0.2388, 0.6967)
(0.1864, 0.3198, 0.4938)
{0.3637, 0.2939, 0.3424)
(0.0408, 0.2841, 0.6751)
(0.1677, 0.3692, 0.4631)
(0.3140, 0.3217, 0.3643)
(0.0357, 0.3879, 0.5764)
(0.1314, 0.4128, 0.4558)
(0.2691, 0.3562, 0.3747)

algorithm
phase II (vapor) CPU time {s)

PEC data I o III
(0.5218, 0.2493, 0.2288) (0.5213, 0.2499, 0.2288) 8.46 7.08 1.86
(0.51438, 0.2481, 0.2377) (0.5156, 0.2503, 0.2341) 9.62 1115 1.59
(0.5560, 0.2655, 0.1885) (0.5622, 0.2505, 0.1873) 1.14 6.82 2.19
(0.6436, 0.2225, 0.1339) (0.6506, 0.2163, 0.1331) 9.94 434 148
(0.6476, 0.2070, 0.1454) (0.6539, 0.2054, 0.1407) 23.35 18.01 178
(0.6319, 0.2535, 0.1146)  (0.6693, 0.2353, 0.1054) 8.19 791 2.3
(0.7842, 0.1550, 0.0607)  (0.7817, 0.1515, 0.0668) 8.24 8.35 1.32
(0.8112, 0.1300, 0.0588) (0.8141, 0.1258, 0.0601) 13.18 13.67 1.43
(0.7674, 0.1854, 0.0472) (0.8015, 0.1584, 0.0401) 7.74 6.92 2.80
(0.8905, 0.0861, 0.0235) - (0.8761, 0.0901, 0.0338) 13.78 2.36 126
(0.9139, 0.0654, 0.0206) (0.8980, 0.0700, 0.0320) 12.20 5.82 1.21

Table 11. Case Study 9: Phase-Split Analysis for z = (0.4989, 0.0988, 0.4023) of the Ternary System Methane (1), Carbon

Dioxide (2), and Hydrogen Sulfide (3) Using the PR Equation of State (T'in °F and P in psia)

algorithm
phase I (HoS liquid) phase II (CH, liquid) phase III (vapor) CPU time (s)
P, PEC data PEC data PEC data 1 o I
(534.0, —117.38) (0.1507,0.1511, (0.1901, 0.1395, (0.8154, 0.0832, (0.8175, 0.0806, (0.9553, 0.0281, (0.9383,0.0287, 21.98 4.99 1.32
0.6982) 0.6704) 0.1013) 0.1019) 0.0165) 0.0330)
(780.0, —94.9) (0.1796, 0.1339, (0.2564, 0.1383, (0.8191, 0.0755, (0.7188, 0.0890, (0.9252, 0.0399, (0.9225,0.0399, 7047 517 1.37
0.6864) 0.60563) 0.1054) 0.1922) 0.0348) 0.0376)
obtained by Hua.ll As revealed by the first composition 10 .
of case 6 in Table 8, stationary roots that are very close ® Algarithm t
to each other, and that often represent challenging 80 - O Algorithm I
phase conditions (such as feed compositions in the v Agorthm il
proximity of phase boundaries), are successfully ob- ® o
tained using PEC without any difficulty. Michelsen’s® Z 60
algorithm failed to detect the instability for the problems 5
that appeared in the case studies 1 and 2, whereas PEC ’5
is capable of predicting the instability of those cases. 5 41
" The results indicate that PEC matches well the capabil-
ity of the IN/GB method of Hua et al.,'? which is 20 | M
considered to be an extremely reliable technique. ® o
The phase-stability algorithm developed in this study o
is relatively simple to program. However, this simplicity 0 v v i
does not sacrifice reliability, as revealed by the results 2 3 4
obtained thus far. The number of function evaluations Number of Components

performed using the PEC method is highly dependent
on the complexity and number of components of the
multiphase system encountered. The number of the root
inclusion tests of the IN/GB method also shows the same
trend.

In this study, three algorithms (algorithms I, II, and
IIT) were developed to solve phase-split problems.
Algorithm I uses stationary points as the initial guess
for mole fractions and the initialization scheme for the
phase fraction (@). The minimization problem was solved
by SQP. Algorithm II is the same as algorithm I, but
the TFM method is employed to identify the initial
guesses for the phase fraction. Algorithm III used the
IFM method initialized by the stationary-point mole
fractions and enhanced with a phase-check procedure.
The results of those algorithms are in excellent agree-
ment with those of Hua!l and are comparable with
experimental data, as shown in Tables 3b, 5b, 7, 10 and
11.

The results of many challenging case studies obtained
from the phase-split analysis indicate that the algo-
rithms developed in this study are reliable for solving
phase equilibrium problems. This is accomplished in
algorithms I and II by (a) providing viable initial guesses
using the proposed initialization scheme, (b) implement-
ing Newton’s method in the convergence neighborhoods

Figure 11. CPU time comparison of algorithms I, II, and III.

generated by good initial guesses, (c¢) checking the
stability of the prospective phases in the equilibrium
produced by SQP, and (d) applying the equal-fugacity
criterion to verify that the compositions of the phases
in equilibrium are definitely located at the tangent
points. In algorithm III, the global minimum of Gibbs
energy is obtained by taking the lowest Gibbs energy
from several solutions resulting from several initial
guesses constructed from stationary points. Some of the
above measures have also enhanced the computational
efficiency of the PEC algorithm. Algorithm I can be
accelerated by using the IFM method to find phase
fractions (leading to algorithm IT). Further acceleration
is applied in algorithm III, where the final compositions
are obtained from the enhanced IFM method. This
acceleration is illustrated in Figure 11. This figure
shows that, as the number of components increases, the
accelerated methods are much faster than the original
method, where initial guesses for phase fraction(s) were
generated by the initialization scheme: .

The effect of acceleration is more pronounced in the
solution of three-phase systems. As shown in Table 11,
for the second feed composition, algorithm I required
70.47 s to produce the solutions, whereas algorithm II



needed only 5.7 s. As discussed before, the phase-split
analysis began with the assumption that the feed is split
into two phases. Each of the phases was checked for its
stability. If there are two combinations of initial guesses
for mole fractions, then, for each combination, 10 initial
guesses for o are generated to be applied in algorithm
I. When the two-phase checks failed, algorithm I used
20 initial guesses (10 initial guesses for o for each
combination) to complete the check, whereas algorithm
1T employed only two initial guesses (one initial guess
for a. for each combination). Therefore, it is obvicus that
algorithm I requires a much larger CPU time than
algorithm II. For the same case 9, algorithm III took
only 1.37 s. Although the number of initial guesses used
in algorithm III is the same as those utilized in
algorithm II, the stability check was conducted in
algorithm III through a phase-check procedure, which
is faster than the stability analysis performed in algo-
rithm IIL. .

The results of the phase-split algorithms established
in this study are similar to those of the IN/GB method.
This indicates that our proposed method is reliable in
producing accurate results when the recommended
initialization scheme is applied properly.

Often, the use of binary interaction parameters (k;)
generated from vapor—liquid equilibrium data leads to
unsatisfactory results for liquid—liquid—vapor and solid—
liquid—vapor systems. This indicates that a careful use
of ks is required. In this study, such parameters were
regressed from experimental data to ensure accurate
representations of the systems considered. Sample
results of this strategy are given in Table 11 for the
methane/carbon dioxide/hydrogen sulfide system, where
experimental data were used to generate ks for the
full phase diagram.

In designing a new separation process, reliable solu-
tions are mandatory, while computational efficiency is
desirable. Therefore, algorithm I can be used for this
purpose. Algorithms II and III are offered to improve
the efficiency of algorithm I. They are well-suited for
the evaluation and development of thermodynamic
models where the phase conditions are known. In such
cases, the efficiency of the computation is the point of
emphasis. However, algorithms II and III require ad-
ditional extensive testing to ascertain their reliability.

8. Conclusions

The reliability, versatility, and computational ef-
ficiency of the different algorithms vary significantly.
Ten challenging case studies were successfully used to
demonstrate the viability of the proposed algorithms
and the initialization procedures. Further, the proposed
initialization strategy applied in algorithms I, II, and
III proved successful for the case studies considered.

In general, our multiphase predictions are identical
to those obtained by Hual! using the IN/GB method,
and they compare well with reliable experimental data.
For quaternary systems, the results generated by the
IN/GB method are slightly different from our results.
The difference might be due to the convergence criteria
and tolerances used in the calculations. The results of
several tests reveal that the present method is as
reliable as the IN/GB method. However, additional tests
involving complex systems need to be conducted to
determine the reliability and efficiency of our method.

The present evaluations indicate that (a) the GEM
algorithm (algorithm I) should be applied in demanding
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process design tasks and (b) the accelerated GEM
algorithms (algorithms I and III) should prove effective
in dealing with systems involving a large number of
components.
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Nomeneclature

g = reduced Gibbs free energy

i = phase i

J = component j

K = equilibrium constant

% = index denoting the position of x, binary interaction
. parameter

n = number of components

P = pressure

T = temperature

v = molar volume

% = mole fraction

x = mole fraction of the liquid phase

y = mole fraction of the vapor phase

z = feed mole fraction

Subscripts

¢ = critical

mix = mixture

r = reference composition
y = arbitrary composition

Supercript

0 = pure component

Greek Symbols

o. = phase fraction

A = change

« = range of variable x

# = number of grid points

7 = any positive number describing the shape of nonuni-
formity
= acentric factor

Appendix A. Liquid -Liquid—Vapor
Phase-Check Procedure

For liquid—liquid—vapor systems, the iteration func-
tions can be expressed as

2z K1 - K})

Fylay,09) = )
o Z:K}Kf+a1Kf-(1 - K)+ 0, K1 -K))

7K1 - &)

Fyloy,09) =
o ;K}KJ?+<11KJ?(1—K})+0L2K}(1—KJ?)

where KJ1 and KJ2 are the liquid'—vapor and liquid?--
vapor equilibrium constants for component j and z; is
feed mole fraction of component j. o3 and a9 are the
phase fractions of liquid! and liquid?, respectively.
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The three phase-check procedures can be stated as
follows:

1. Single phase exists
(i) only vapor phase

Zj %
2-1 <1 and — < ,1
J K, J I{;z
(ii) only liquid® phase
K!
okl wd Fel<d
J ik}
(iii) only liquid® phase
Kj
A<l amd Tyo<d
J J K

2. Two phases exist
(i) liquid® and vapor

Zj
—>1, Ki>1
;K} ;’2’ !

and Fy(03,0) < 0 at the root of Fi(0,,00=0

(ii) liquid® and vapor
Zj
2>, YK > 1
J v J

and Fy(a,,0) < 0 at the root of Fy(0;,0) =0

 (iii) liquid® and liquid?
K K2
._j> 1, J.—-J-> 1
i 'K 7K}

and Fy(a,;,1 — o) > 0 at the root of
Filoy,1 — ap) — Fylay,1 — 0,) = 0
3. Three phases exist
@) liql}idl—liquidz, bubble-point prediction

Sttt So
—>1, —> 1
; JI{J? - JK}
and Fy(a;,1 — 04) = 0 at the root of
Filog,1 — o) — Fy(oy,1 — ;) =0
(ii) liquid'~vapor, dew point of liquid®
z.
3L YaKi1
T K} j
and Fy(a;,0) = 0 at the root of Fio,,00=0
(iii) liquid®~vapor, dew point of liquid®
z2.
S2o1, Sy
K J
and F(0,,0) = 0 at the root of Fy(a,,00=0

Once it has been determined that three phases exist
(liquid', liquid?, and vapor), the two iteration functions

above are solved simultaneously for a; and ay. The new
mole fractions of component J in the vapor, liquid?, and
liquid? phases are calculated, respectively, as

= 2K K}
% K} K} + o0, K}(1 - KD + 0, K}(1 — K7)
= 5%
" B+ K-+ o, K0 - KD
2 5K

TR+ oK - Ky T R — K
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