ABSTRACT

Heat transfer and pressure drop measurements for horizontal macro-tubes under uniform wall heat flux boundary condition have been conducted by various researchers in recent years. From their studies, it was shown that good agreements were observed in the laminar and turbulent regions. However, for the transition region, the heat transfer and pressure drop characteristics depended on various factors, such as inlet configuration, buoyancy effect, and surface roughness. In a recent study by Tam et al. (2010), they measured the heat transfer and pressure drop simultaneously for a horizontal macro-tube with and without internally micro-fins and concluded that under the heating condition, the transition Reynolds number range for heat transfer and pressure drop were completely different. The transition Reynolds number range was documented in their research in great detail. However, for horizontal micro-tubes, there is no information in the literature on the simultaneous behavior of the heat transfer and pressure drop, especially in the transition region. In order to fill in this gap, an experimental setup was built to measure the heat transfer and pressure drop simultaneously for a horizontal micro-tube under uniform wall heat flux boundary condition. Water was used as the test fluid and the test section was a stainless steel micro-tube with 1000μm diameter. For heat transfer, the results indicated that the micro-tube had an earlier start and end of transition compared to the macro-tube and, in the turbulent region, an increase in heat transfer due to the surface roughness was observed. For friction factor under isothermal condition, the laminar data and the start of transition were different from the isothermal case, and the effect of heating was not seen on the end of transition.

INTRODUCTION

Due to rapid advancement in fabrication techniques, the miniaturization of devices and components is ever increasing in many applications. Whether it is in the application of miniature heat exchangers, fuel cells, pumps, compressors, turbines, sensors, or artificial blood vessels, a sound understanding of fluid flow in micro-scale channels and tubes is required. Indeed, within this last decade, countless researchers have been investigating the phenomenon of fluid flow in mini-, micro-, and even nanochannels. However, previous experiments in single-phase heat transfer in micro-channels have shown a lot of disagreement with the classical behavior. No concrete conclusion regarding the adherence to macro-scale behavior has been confirmed so far. Prior reviews (Obot, 2000; Palm, 2001; Papautsky et al., 2001; Sobhan and Garimella, 2001; Rostami et al., 2002) along with recent reviews (Celata, 2004; Morini, 2004; Hestroni, 2005; Yang and Lin, 2007) have presented comprehensive information on heat transfer and fluid flow in micro-channels and micro-tubes. According to Krishnamoorthy et al. (2007), transition in micro-tubes does not compare well with any of the available macro-scale correlations. Moreover, the precise start and end of the transition region and the different factors affecting it have not been observed and discussed in the past literature.

Another major area of research in the phenomenon of fluid flow in mini- and microchannels is the friction factor. However,
amidst all the investigations in mini- and microchannel flow, there seems to be a lack in the study of the flow in the transition region. One obvious question is the location of the transition region with respect to the hydraulic diameter of the channel and the roughness of the channel. To successfully understand friction factor and the location of the transition region, a systematic experimental investigation on various roughness values of micro-tubes is necessary. However, the science behind these advanced technologies seems to be controversial, especially fueled by the experimental results of the fluid flow and heat transfer at these small scales. On one hand, researchers have found that the friction factors to be below the classical laminar region theory (Choi et al., 1991; Yu et al., 1995). Meanwhile, some have reported that friction factor correlations for conventional sized tubes to be applicable for mini- and micro-tubes (Mala and Li, 1999; Kandikar et al., 2003; Li et al., 2003). However, many recent experiments on small-sized tubes and channels have observed higher friction factors than the correlations for conventional-sized tubes and channels (Zhao and Liu, 2006; Hwang and Kim, 2006; Rand et al., 2006; Celeta et al., 2006; Tang et al., 2007), and the cause of this discrepancy was attributed to surface roughness. Ghajar et al. (2010a) experimentally verified that the wrong selection of pressure sensing diaphragm lead to unrealistic results and frequently the unrealistic results were blamed to be the effect of roughness. In this study, the diaphragms selection scheme suggested by Ghajar et al. (2010a) was used.

In the literature, there is very little information on the simultaneous behavior of heat transfer and pressure drop, especially, in the transition region. Therefore, in this study, the major objectives of this research are (1) to develop an experimental setup to measure the heat transfer and pressure drop for a horizontal micro-tube under the isothermal and uniform wall heat flux boundary conditions; (2) to accurately measure the heat transfer and pressure drop in micro-tubes simultaneously and examine the effects of factors such as roughness and diameter on the overall heat transfer and pressure drop characteristics, especially, in the transition region; and (3) to examine the effect of heating on the friction factor for micro-tubes.

EXPERIMENTAL SETUP AND DATA REDUCTION

The experimentation for this study was performed using a relatively simple but highly effective apparatus. The apparatus used was designed with the intention of conducting highly accurate heat transfer and pressure drop measurements. The apparatus consists of four major components. These are the fluid delivery system, the flow meter banks, the test section assembly, and the data acquisition system. An overall schematic for the experimental test apparatus is shown in Figure 1. The fluid delivery system consists of a high pressure cylinder filled with ultra high purity nitrogen in combination with a stainless steel pressure vessel. After the working fluid passes through the apparatus, it is collected into a sealed container. The working fluid, distilled water is stored in the stainless steel pressure vessel. As the pressurized nitrogen is fed into the pressure vessel, the working fluid is forced up a stem extending to the bottom of the vessel, out of the pressure vessel, and through the flow meter array and test section.

Flow rate of the water entering the array is further regulated using a metering valve. Two Coriolis flow meters are necessary in order to accommodate different range of flow rates. Both flow meters were factory calibrated. The accuracy of the mass flow rate is within ±0.5%. After passing through the flow meter array, fluid enters the test section assembly. The test section assembly contains the test section as well as the equipment necessary for measurement of inlet and outlet fluid temperature and pressure drop. The test section is placed on a high density polyethylene (HDPE) sheet. Four adjustable bolts and a level were installed on the HDPE board to keep the test section in a horizontal position.

In this study, the test sections included the stainless steel tubes with 1000μm and 2000μm inner diameters. The 2000μm macro-tube was used for verification of the experimental setup. The manufacturer specified an inner wall root mean square roughness of 0.41μm. Compared to the 2000μm inner diameter, the roughness was relatively small and, therefore, the effect of the roughness for the macro-tube was negligible. However, for the micro-tube, the roughness was a major factor affecting the heat transfer and pressure drop and was measured for the 1000μm micro-tube. For measuring the surface roughness, as seen in Figure 2, a Dektak 6M Stylus Surface Profilometer was used. The value of surface roughness (Ra) and the relative roughness (ε/D) was 4.3μm and 0.004308, respectively.
Since the stainless steel micro-tubes in this study were purchased from an outside source, data obtained from these tubes is only as accurate as the manufacturer’s specifications. In order to ensure that the data recorded was of the highest quality possible, it was deemed necessary to determine the degree of accuracy of the manufacturer’s specifications. This was done by using the scanning electron microscope (SEM) for two different stainless steel tube sizes in order to check the accuracy of the manufacturer’s tolerances. Figure 3 shows the SEM measurements for the two stainless tubes. The two stainless steel tubes examined had an inner diameter and tolerance of 2000±32 μm and 1000±14 μm, respectively. The SEM imaging of these two tubes established that the manufacturer’s specifications of the tube diameters and tolerances are verifiable and dependable.

As shown in Figure 4, electric copper wires were soldered on to the outside surface of the tubes tested. A DC power supply was used to provide the uniform wall heat flux boundary condition. For the temperature measurements, the inlet and exit bulk temperatures were measured by means of thermocouple probes (Omega TMQSS-125U-6) placed before and after the test section, respectively. Also, self-adhesive thermocouples (Omega SA1XL-T-72) were placed along the test section. All the thermocouples and thermocouple probes were calibrated by a NIST-calibrated thermocouple probe (±0.22°C) and an Omega HCTB-3030 constant temperature circulating bath. Therefore, the temperature sensors were as accurate as ±0.22°C. Figure 4 shows the arrangement of the thermocouples on the test section. The thermocouples were placed at close intervals near the entrance and at greater intervals further downstream. As the diameter of the micro-tube was small, only two surface thermocouples (TC1 and TC2) were located on the periphery of the tube at each station. After installation of the thermocouples, the micro-tube was covered by self-adhesive elastomeric insulating material. From the local peripheral wall temperature measurements at each axial location, the inside wall temperatures and the local heat transfer coefficients were calculated by the method shown in Ghajar and Kim (2006). In these calculations, the axial conduction was assumed negligible (RePr > 2,800 in all cases), but peripheral and radial conduction of heat in the tube wall were included. In addition, the bulk fluid temperature was assumed to increase linearly from the inlet to the outlet. Also, the dimensionless numbers, such as Reynolds, Prandtl, Grashof, and Nusselt numbers were computed by the computer program developed by Ghajar and Kim (2006). The Reynolds number range for this study was around 800 to 13000. Heat balance errors were calculated for all experimental runs by taking a percent difference between two methods of calculating the heat addition. The product of the voltage drop across the test section and the current carried by the tube was the primary method, while the fluid enthalpy rise from inlet to exit was the secondary method. In all cases the heat balance error was less than 10%.

For the pressure drop measurements, based on Ghajar et al. (2010a), careful attention was paid to the sensitivity of the diaphragms of the pressure transducer. From the manufacturer, the accuracy of the Validyne pressure transducer is given as ±0.25% of the full scale reading of each diaphragm used. In this study, it was confirmed again that different ranging diaphragms would generate different results even in the same Reynolds number range. To ensure the measurement accuracy, a suitable diaphragm was selected based on the Reynolds number.
range. Calibrations for pressure transducer were performed before each test run. For the calibration purpose, several high accuracy WIKA gauges were used and the pressure reading uncertainty was estimated at ±1.0%.

For data acquisition, a National Instruments SCXI-1000 data collecting system was used. All digital signals from the flow meters, thermocouples, and pressure transducer were acquired and recorded by the Windows-based PC with a self-developed LabView program.

The uncertainty analyses of the overall experimental procedures using the method of Kline and McClintock (1953) showed that there is a 16% uncertainty for the heat transfer coefficient calculations and a 5% uncertainty for the friction factor calculations.

RESULTS AND DISCUSSION

To verify the new experimental setup, experiments for 2000μm stainless steel tube were conducted first. Figure 5 shows the comparison of 2000μm tube heat transfer data with the data of Ghajar and Tam (1994) for a 15800μm stainless steel tube with a square-edged inlet. The square-edged inlet data was used because the inlet of this study was also similar to the square-edged inlet type. Since the deviations between the two data sets were below 10%, the experimental setup and the heat transfer data were confirmed to be reliable. It should be noted that the parallel shift from the classical fully developed value of Nu = 4.364 for the uniform wall heat flux boundary condition in the laminar region is due to the buoyancy effect.

![Figure 5: Comparison of present heat transfer data for the 2000μm diameter stainless steel tube with experimental data of Ghajar and Tam (1994) at x/D of 200.](image)

Figure 5: Comparison of present heat transfer data for the 2000μm diameter stainless steel tube with experimental data of Ghajar and Tam (1994) at x/D of 200.

Base on the careful consideration of the sensitivity of pressure transducer, the measurements of friction factor were also verified by comparing the 2000μm tube friction factor data with the classical friction factor equations for laminar and turbulent flows. As it can be seen from Figure 6, the 2000μm tube friction factor data compared very well with the classical fully-developed friction factor equations in the laminar (\(f = 64/Re \)) and turbulent (Blasius equation, \(f = 0.316/Re^{0.25} \)) regions. Figure 6 also shows that the start and end of transition were at Reynolds numbers of around 1400 and 3900, respectively. The start of transition Reynolds number of 1400 was based on the data point just leaving the laminar line, \(f=64/Re \). The end of transition Reynolds number of 3600, was based on the first data point from the transition region to reach the turbulent line, \(f = 0.316/Re^{0.25} \). Owing to the sharp inlet effect, the start of transition is much earlier than the typical transition Reynolds number of 2300. In Figure 6, the overall friction factor trend over the entire flow regime, especially the transition region, compared well with the experimental data of Ghajar et al. (2010a) for a stainless steel tube with a comparable diameter of 2083μm. Hence, the entire experimental setup for the pressure drop measurements was verified to be reliable.

![Figure 6: Comparison of present friction factor data for the 2000μm diameter stainless steel tube with classical equations and experimental data of Ghajar et al. (2010a).](image)

After the verifications of the experimental setup, simultaneous heat transfer and pressure drop measurements and isothermal pressure drop measurements for the 1000μm micro-tube and 2000μm macro-tube were conducted. The results are shown in Figure 7 for heat transfer and Figure 8 for friction factor. As seen from these figures, the start and end of transition for heat transfer (with uniform wall heat flux boundary condition) and friction factor (with isothermal and uniform wall heat flux boundary conditions) in the 1000μm micro-tube and the 2000μm macro-tube were established.

The transition Reynolds numbers for the heat transfer and friction factor are summarized in Tables 1 and 2, respectively. From Figure 7, the start of the transition region for heat transfer was determined to be the first point from the laminar line which is parallel to the classical laminar flow line of Nu=4.364 that...
followed the “S” shaped curve. The end of transition region was defined as the first point that landed on the turbulent line that was parallel to the line expressed by $St Pr^{0.67} = 0.023Re^{0.2}(\mu_t/\mu_m)^{0.14}$, the Sieder and Tate correlation (1936). Regarding to the start and end of the transition region for friction factor, from Figure 8, the start of transition region was defined as the first point that left the laminar line ($f = 64/Re$), and the end of the transition region was defined as the first point that landed on the turbulent line (Blasius equation, $f = 0.316/Re^{0.25}$).

Table 1: Start and end of transition for heat transfer of macro- and micro-tubes at x/D of 200 (see Fig. 7).

<table>
<thead>
<tr>
<th>Tube, Condition</th>
<th>Re_start</th>
<th>StPr0.7</th>
<th>Re_end</th>
<th>StPr0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-tube, Ghajar and Tam (1994): 15800μm tube, (Square-edged)</td>
<td>2524</td>
<td>1.5e-3</td>
<td>8791</td>
<td>3.98e-3</td>
</tr>
<tr>
<td>Macro-tube, Current Study: 2000 μm Stainless Steel Tube</td>
<td>2411</td>
<td>1.7e-3</td>
<td>8140</td>
<td>4.16e-3</td>
</tr>
<tr>
<td>Micro-tube, Current Study: 1000 μm Stainless Steel Tube</td>
<td>2042</td>
<td>2.0e-3</td>
<td>7809</td>
<td>4.79e-3</td>
</tr>
</tbody>
</table>

Table 2: Start and end of transition for friction factor of macro- and micro-tubes at x/D of 200 (see Fig. 8).

<table>
<thead>
<tr>
<th>Tube, Condition</th>
<th>Re_start</th>
<th>f</th>
<th>Re_end</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-tube, Isothermal Ghajar et al. (2010a): 2083μm Stainless Steel Tube</td>
<td>1455</td>
<td>4.87e-2</td>
<td>3954</td>
<td>3.96e-2</td>
</tr>
<tr>
<td>Micro-tube, Isothermal Current Study: 1000 μm Stainless Steel Tube</td>
<td>1874</td>
<td>3.57e-2</td>
<td>3189</td>
<td>4.10e-2</td>
</tr>
<tr>
<td>Micro-tube, Heating Current Study: 1000 μm Stainless Steel Tube</td>
<td>1649</td>
<td>3.74e-2</td>
<td>3289</td>
<td>4.14e-2</td>
</tr>
</tbody>
</table>

For the friction factor under isothermal condition, as seen in Figure 8, the laminar and turbulent friction factors for the 1000μm micro-tube exhibited the same behavior as the macro-tube data of the current study and Ghajar et al. (2010a). Referring to Table 2, the start and end of transition for the 2000μm macro-tube was nearly the same as the 2083μm macro-tube of Ghajar et al. (2010a). For the isothermal case, as shown in Table 2, the lower and upper transition Reynolds numbers of the 1000μm micro-tube were 1874 and 3189 which were different from the 2000μm macro-tube values (Re=1405 and 3704). In the study of Ghajar et al. (2010b), transition Reynolds numbers for 1000μm tubes with different inner surface roughness were measured and it was observed that the increase of roughness induced the narrower transition range. Therefore, the narrower transition range was concluded to be caused by roughness. Results in Table 1 also indicate that for the isothermal case, the decrease in the tube diameter from 2000μm to 1000μm delayed the onset of transition. This is also consistent with the results of Ghajar et al. (2010a) for tube diameters ranging from 2083 to 667μm.
For friction factor under heating condition, as seen in Figure 8, the laminar friction factor for the micro-tube was shown to be slightly less than the isothermal one. The reduction of friction factor under heating condition was caused by the decrease in the viscosity due to the temperature increase near the tube wall. Also, for the micro-tube, it was observed that heating delayed the start of transition. However, heating did not affect the end of the transition. Moreover, heating did not influence the friction factor in the transition and turbulent regions.

For the micro-tube, the increase in the heat transfer in the turbulent region was likely caused by the rough inner surface. To further enrich the results, tubes with different diameters and surface roughness values should be employed in the future studies.

ACKNOWLEDGMENTS
This research is supported by the Fundo para o Desenvolvimento das Ciencias e da Tecnologia under project no. 033/2008/A2 and the Institute for the Development and Quality, Macau.

NOMENCLATURE

- \(f \) fully developed friction factor coefficient (Darcy friction factor), (=2·\(D \cdot \Delta P / \rho \cdot L \cdot V^2 \)), dimensionless
- \(c_p \) specific heat of the test fluid evaluated at \(T_b \), J/(kg·K)
- \(D \) inside diameter of the test section (tube), m
- \(h \) fully developed peripheral heat transfer coefficient, W/(m²·K)
- \(k \) thermal conductivity, W/(m²·K) evaluated at \(T_b \), W/(m·K)
- \(L \) length of the test section (tube), m
- \(Nu \) local average or fully developed peripheral Nusselt number (=\(h \cdot D / k \)), dimensionless
- \(Pr \) local bulk Prandtl number (=\(c_p \cdot \mu_b / k \)), dimensionless
- \(Ra \) surface roughness, \(\mu m \)
- \(Re \) local bulk Reynolds number (=\(\rho \cdot V \cdot D / \mu_b \)), dimensionless
- \(St \) local average or fully developed peripheral Stanton number [=\(Nu / (Pr \cdot Re) \)], dimensionless
- \(T_b \) local bulk temperature of the test fluid, °C
- \(T_w \) local wall temperature inside wall temperature, °C
- \(V \) average velocity in the test section, m/s
- \(x \) local axial distance along the test section from the inlet, m

Greek Symbols

- \(\Delta P \) pressure difference, Pa
- \(\mu_b \) absolute viscosity of the test fluid evaluated at \(T_b \), Pa·s
- \(\mu_w \) absolute viscosity of the test fluid evaluated at \(T_w \), Pa·s
- \(\rho \) density of the test fluid evaluated at \(T_b \), kg/m³
- \(\varepsilon \) roughness height, m

REFERENCES

Microchannels and Minichannels (ICNMM2008), June 23-23, 2008, Darmstadt, Germany.
