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ABSTRACT 

Artificial neural network (ANN) has shown its superior 
predictive power compared to the conventional approaches in 
many studies. However, it has always been treated as a “black 
box” because it provides little explanation on the relative 
influence of the independent variables in the prediction 
process. In our previous work (Tam et al., 2006), an index of 
contribution extracted from the ANN correlation was primarily 
introduced to analyze the relative importance of the associated 
independent variables on our forced convective turbulent heat 
transfer data in a horizontal tube (Ghajar and Tam, 1994). The 
most and the least important variables were determined 
quantitatively and found to be thoroughly conforming to the 
empirical correlation and physical phenomena. In this study, we 
have extended the method to a more complicated data set, 
forced and mixed convection developing laminar flow in a 
horizontal tube with uniform wall heat flux. The parameters 
influencing the Nusselt number for this data set were Reynolds 
number, Grashof number, Prandtl number, the length-to-
diameter ratio, and the bulk-to-wall viscosity ratio. Due to the 
complexity of the problem it is difficult to determine the 
influence of the individual independent variables. According to 
literature, for laminar heat transfer involving entrance and 
mixed convection effects, Rayleigh number and Graetz number 
are both important. Through the re-arrangement of those 

variables, the factor analysis clearly showed that the Rayleigh 
number has a significant influence on the mixed convection 
heat transfer data and the forced convection heat transfer data is 
more influenced by the Graetz number. The results clearly 
indicate that the factor analysis method can be used to provide 
an insight into the influence of different variables or a 
combination of them on complicated heat transfer problems. 

 
INTRODUCTION 

Heat transfer inside horizontal tubes in the laminar, 
transitional and turbulent flow regimes have been studied 
experimentally by various researchers in the past. Usually, the 
experimental results are presented in the form of heat transfer 
correlations. The form of the correlations is based either on 
different theoretical models or they are completely empirical 
based. The coefficients of the correlations are usually 
determined by the conventional least squares method. Recently 
Tam and Ghajar (2006) documented some of the most well 
accepted correlations in the above-mentioned flow regimes. A 
new correlation in the transition region based on the method of 
artificial neural network (ANN) with excellent accuracy was 
proposed by Ghajar et al. (2002). In their paper, it was 
mentioned that ANN can also be used in the determination of 
the most and the least important variables using the coefficient 
matrices obtained from the weight and bias matrices of the 
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ANN correlation. However, there are some unanswered 
questions regarding this technique, such as (1) applicability of 
this technique to other data sets and (2) besides the most 
important variables, i.e., the normalized Reynolds and Grashof 
numbers, and the least important variables, i.e., the normalized 
Sieder and Tate factor (µb/µw)0.14, the importance of the 
normalized Prandtl number can not be seen. Recently, Tam et 
al. (2006) modified the method and defined an index of 
contribution to examine a set of experimental data in the 
turbulent flow region (Ghajar and Tam, 1994). It was found 
that the Reynolds (Re) and the Prandtl (Pr) numbers are 
observed as the most important parameters. The length-to-
diameter ratio (x/D) and the viscosity ratio (µb/µw)0.14

 are found 
to be the least important parameters. The findings are consistent 
with the physical meanings of the turbulent heat transfer pipe 
flow problems. In general, the contributions from different 
parameters are relatively easy to observe in the turbulent region 
because the turbulent motion effects are strong but the effects 
of entrance, buoyancy, and variation of properties are usually 
less significant. On the contrary, the entrance effect, the 
buoyancy, and the variation of physical properties in the 
laminar flow region are extremely important. Therefore, in this 
study, we will further investigate the modified method by 
applying it to the forced and mixed convection developing 
laminar flow in a horizontal tube with uniform wall heat flux in 
order to verify its applicability. 

NOMENCLATURE 
a = output vector    
b = bias matrix 
cp = specific heat at constant pressure, kJ/(kg-K) 
D = inside diameter of the tube, m 
f = activation (or transfer) function 
g = acceleration of gravity, m/s2 

Gr = local bulk Grashof number (= gβρ2D3(Tw-Tb)/µ2)  
Gz = local Graetz number (= RePrD/x)  
ht = local peripheral heat transfer coefficient at the top of tube, 

W/(m2-K) 
hb = local peripheral heat transfer coefficient at the bottom of 

tube, W/(m2-K) 
k = thermal conductivity, W/(m2-K) 
Nu = local average or fully developed peripheral Nusselt 

number (= hD/k) 
Nul = local average or fully developed peripheral laminar 

Nusselt number 
Nut = local average or fully developed peripheral turbulent 

Nusselt number 
p = input vector 
Pj = contribution of the jth independent variable, pj
Qk = contribution of the kth neuron output to the ANN model 
Pr = local bulk Prandtl number (= cpµb /k) 
Ra = local bulk Rayleigh number (= GrPr) 
Re = local bulk Reynolds number (= ρVD/µb)  
Tb = local bulk temperature, ºC 
Tw = local wall temperature, ºC 

V = average velocity in the test section, m/s 
W = weight matrix 
x = local distance along the test section from the inlet, m 

 
Greek symbols 
µb = local bulk dynamic viscosity, Pa-s 
µw = local wall dynamic viscosity, Pa-s 
ρ = density, kg/m3

 
Subscripts 
i = dummy parameter 
j = the jth input variable 
k = the kth hidden neuron 
max = maximum value 
min = minimum value 
R = number of inputs 
S = number of hidden neurons 
 
Superscripts 
1 = the hidden layer of the ANN model 
2 = the output layer of the ANN model 

EXPERIMENTAL DATASET 
The heat transfer experimental data used in this study, 

along with a detailed description of the experimental apparatus 
and procedures used, were reported by Ghajar and Tam (1994). 
A schematic of the overall experimental setup used for heat 
transfer measurements is shown in Figure 1. In this paper, only 
a brief description of the experimental setup and procedures 
will be provided. The local forced and mixed convective 
measurements were made in a horizontal, electrically heated, 
stainless steel circular straight tube with re-entrant, square-
edged, and bell-mouth inlets under a uniform wall heat flux 
condition. The pipe had an inside diameter of 1.58 cm and an 
outside diameter of 1.90 cm. The total length of the test section 
was 6.10 m, providing a maximum length-to-diameter ratio of 
385. A uniform wall heat flux boundary condition was 
maintained by a dc arc welder. Thermocouples (T-type) were 
placed on the outer surface of the tube wall at close intervals 
near the entrance and at greater intervals further downstream. 
Twenty-six axial locations were designated, with four 
thermocouples placed at each location. The thermocouples 
were placed 90 degrees apart around the periphery. From the 
local peripheral wall temperature measurements at each axial 
location, the inside wall temperatures and the local heat transfer 
coefficients were calculated (Ghajar and Kim, 2006). In these 
calculations, the axial conduction was assumed negligible 
(RePr > 4,200 in all cases), but peripheral and radial 
conduction of heat in the tube wall were included. In addition, 
the bulk fluid temperature was assumed to increase linearly 
from the inlet to the outlet. As reported by Ghajar and Tam 
(1994), the uncertainty analyses of the overall experimental 
procedures showed that there is a maximum of 9% uncertainty 
for the heat transfer coefficient calculations. Moreover, the heat 
balance error for each experimental run indicates that in general, 
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the heat balance error is less than 5%. For Reynolds numbers 
lower than 2500 where the flow is strongly influenced by 
secondary flow, the heat balance error is slightly higher (5–8%) 
for that particular Reynolds number range. To ensure a uniform 
velocity distribution in the test fluid before it entered the test 
section, the flow passed through calming and inlet sections. 
The calming section had a total length of 61.6 cm and consisted 
of a 17.8 cm diameter acrylic cylinder with three perforated 
acrylic plates, followed by tightly packed soda straws 
sandwiched between galvanized steel mesh screens.  

 
 

Figure 2: Schematic of the three different inlet configurations. 

Before entering the inlet section, the test fluid passed 
through a fine mesh screen and flowed undisturbed through 
23.5 cm of a 6.5 cm-diameter acrylic tube before it entered the 
test section. The inlet section had the versatility of being 
modified to incorporate a re-entrant or bell-mouth inlet (see 
Figure 2). The re-entrant inlet was simulated by sliding 1.93 cm 
of the tube entrance length into the inlet section, which was 
otherwise the square-edged (sudden contraction) inlet. For the 
bell-mouth inlet, a fiberglass nozzle with a contraction ratio of 
10.7 and a total length of 23.5 cm was used in place of the inlet 
section. In the experiments, distilled water and mixtures of 
distilled water and ethylene glycol were used. They collected 
1290 experimental data points, and their experiments covered a 
local bulk Reynolds number range of 280 to 49000, a local 
bulk Prandtl number range of 4 to 158, a local bulk Grashof 
number range of 1000 to 2.5×105, and a local bulk Nusselt 
number range of 13 to 258. The wall heat flux for their 
experiments ranged from 4 to 670 kW/m2. 

 

 
Figure 1: Schematic diagram of experimental setup. 

 
HEAT TRANSFER CHARACTERISTICS IN THE 
LAMINAR AND TURBULENT REGIONS 

Before analyzing the heat transfer data, it is important to 
review the heat transfer characteristics of the flow in the 
laminar and turbulent regions.  
 Application of heat to the tube wall produces a temperature 
difference in the fluid. The fluid near the tube wall has a higher 
temperature and lower density than the fluid close to the 
centerline of the tube. This temperature difference may produce 
a secondary flow (vortex-like flow) due to free convection. The 
boundary between the mixed and forced convection, according 

to Ghajar and Tam (1995), can be determined from the local 
peripheral heat transfer coefficient at the top of the tube to the 
local peripheral heat transfer coefficient at the bottom of the 
tube (ht/hb). The ratio should be close to unity (0.8-1.0) for 
forced convection and is much less than unity (< 0.8) for a case 
in which mixed convection exists. To illustrate the different 
heat transfer modes (mixed and forced convection) encountered 
for the three inlets during the experiments, Figure 3 is 
presented. This figure shows the effect of secondary flow on 
heat transfer coefficient ratio, ht/hb for different inlets, flow 
regimes, and the length-to-diameter ratio (distance from the 
inlet). It includes representative Reynolds number ranges from 
laminar to fully turbulent flow (Re = 280-49,000) for the three 
inlets. As shown in the figure, the boundary between the forced 
and mixed convection heat transfer is inlet-dependent. For the 
re-entrant, square-edged, and bell-mouth inlets when the 
Reynolds numbers were greater than 2500, 3000, and 8000, 
respectively, the flows were dominated by forced convection 
heat transfer and the heat transfer coefficient ratios (ht/hb) did 
not fall below 0.8-0.9 and at times exceeded unity due to the 
roundoff errors in the property evaluation subroutine of their 
data reduction program (Ghajar and Kim, 2006). However, the 
free convection effect was observed more significant for the 
low Reynolds number flows than for those in high Reynolds 
number. For the low Reynolds number flows dominated by 
mixed convection heat transfer, the ht/hb ratio began near 1 at 
the tube entrance, indicating that the flow was initially 
dominated by the forced convection, but dropped off rapidly as 
the length-to-diameter ratio (x/D) increased. Beyond about 125 
diameters from the entrance, the ratio was almost invariant with 
x/D, indicating a much less dominant role for forced convection 
heat transfer and an increased free convection activity.  
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Figure 3: Effect of secondary flow on heat transfer coefficient 

for different inlets and flow regimes. 
 

Based on the above observations, mixed convection only 
appeared in the laminar heat transfer data. Therefore, it can be 
concluded that the laminar Nusselt number is a function of five 
dimensionless variables, which are Re, Pr, Gr, x/D, and µb/µw . 
The ranges of these variables considered in this study for 
laminar flow are: 

 
13 ≤ Nu ≤ 65 ;  280 ≤  Re ≤ 3800 

40 ≤ Pr ≤ 160 ; 1000 ≤ Gr ≤ 2.8×104

 3 ≤ x/D ≤ 192 ;  1.2 ≤ µb/µw ≤ 3.8 
 

 A total of 546 experimental data points is used. Out of 
them, 168 data points are for the re-entrant inlet, 294 data 
points are for the square-edged inlet, and 84 data points are for 
the bell-mouth inlet. Ghajar and Tam (1994) correlated their 
experimental data for the laminar forced and mixed convection 
in the entrance and fully developed flow regions for all three 
inlets in the following form: 
 

[ ] 0.14
wb

1/30.75
l )/µ(µ)0.025(GrPr(RePrD/x)1.24Nu +=     (1) 

 
 The form of the above correlation is similar to the one 
proposed by Martinelli and Boelter (1942). The accuracy of the 

correlation is described in Table 1. The majority (86%) of the 
laminar data were predicted by this correlation within ±10% 
deviation.  

Regarding the turbulent region, the turbulent Nusselt 
number is a function of the dimensionless variables, Re, Pr, x/D, 
and µb/µw. Unlike the laminar region, Gr is not considered here 
since the buoyancy effect is not important in the turbulent 
region. The ranges of the dimensionless variables considered in 
this study for turbulent flow are summarized as follows: 

 
    52.3 ≤ Nu ≤ 242.4     ;   7,000 ≤ Re ≤ 49,000 

     4.0 ≤ Pr ≤ 34.0    ;   3.21 ≤ x/D ≤ 173.08 

     1.1 ≤ µb/µw ≤ 1.7  
 
Ghajar and Tam (1994) developed the following 

correlation for their turbulent forced convection data in the 
entrance and fully developed regions for all three inlets: 

 
0.14

wb
0.00540.3850.8

t )/µ(µ(x/D)Pr0.023ReNu −=       (2) 
 
 A total of 604 data points were used to develop the above 
correlation, correlating 100% of experimental data with less 
than ±11% deviation and 73% of measured data with less than 
±5% deviation. The details are also shown in the Table 1.  
 

Table 1:  Prediction Results for Correlations (1) & (2) 
Laminar Flow Data Prediction 

Inlet 
Configuration 

No. of Data 
within ±10% 

No. of Data 
within ±5% 

Abs. Mean 
Dev. (%) 

Range of 
Dev. Abs.  

(%) 
Total data points 
All three inlets 

(546 pts.) 
466 261 5.81 -16.8% 

to +15.4% 

Re-entrant 
(168 pts.) 155 94 5.01 -16.8% 

to +9.6% 
Square-edged 

(294 pts.) 243 140 5.90 -16.5% 
to +15.4% 

Bell-mouth 
(84 pts.) 68 27 7.08 -15.0% 

to +2.0% 
Turbulent Flow Data Prediction 

Inlet 
Configuration 

No. of Data 
within ±10% 

No. of Data 
within ±5% 

Abs. Mean 
Dev. (%) 

Range of 
Dev. Abs. 

(%) 
Total data points 
All three inlets 

(604 pts.) 
600 439 4.42 -10.28%  

to 10.6% 

Re-entrant 
(271 pts.) 269 192 3.89 -9.17%  

to 10.6% 
Square-edged  

(207 pts.) 206 153 3.56 -8.74%  
to 10.1% 

Bell-mouth 
(126 pts.) 125 94 3.48 -10.28%  

to 4.08% 

FACTOR ANALYSIS METHOD 
In a previous study, Tam et al. (2006) developed a factor 

analysis by extracting the knowledge from the “matrices 
weights” of the ANN correlation. The index of contribution 
was defined to quantify the contribution of each input variable 
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to the ANN. Before applying the method to the laminar dataset, 
the turbulent data will be examined as an illustrative example.  

  

 
 

Figure 4: The three-layer ANN with S neurons in its hidden 
layer. 

 
The three-layer feed-forward neural network was 

employed as the architecture. The schematic diagram of the 
network is represented in Figure 4. It has been shown that any 
continuous function can be modeled by the network (Hornik, 
1991). The weight and the bias of the optimal ANN model are 
usually determined by the back propagation algorithms 
(Rumelhart et al., 1986). In order to determine the contribution 
of each independent variable to the correlation, the matrix form 
of the optimal ANN model has to be examined as follows: 
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where ( ) are the R inputs, S is the number of hidden 

neurons, 

R1 p,,p L

te1
1f(t)

−+
= is the transfer function and w’s and b’s 

are the weights and biases of the ANN, respectively. The 
contribution of the independent variables pj to the output of the 
kth neuron in the hidden layer  is simply ∑ =

+
R

1j

1

kj

1

kj )bpwf(
1

kjw  and the relative contribution of the kth neuron output to 
the ANN model is: 
 

∑=
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k w

w
Q          (4) 

 
Therefore, the contribution of the independent variables pj to 
the ANN model is: 
 

1

kj

S

1k
kj wQP ∑

=

∗=            (5) 

Finally, in order to compare with the other independent 
variables, the index of contribution of pj is defined to be 
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Hence, the most significant independent variable would have 
the largest index of contribution. On the other hand, the 
variable with small index appears to be less important. 

Using the supervised three-layer feed-forward neural 
network with fully weighted connection and the algorithm 
described above to determine the index of contribution for each 
independent variable, the stable steepest descent algorithm was 
selected as the best gradient method (see Tam et al., 2006). 
Regarding to the number of hidden neurons and training 
iterations employed, it was determined by the observations of 
the computation based on their different combinations. 
According to the Equation (2), the Re, Pr, x/D, and µb/µw were 
treated as the input variables and the Nu was used as the output 
variable for the training of ANN. As depicted in Figure 5, it is 
apparent that the index of contribution is consistent at the 
beginning of the 10,000 iterations regardless of the number of 
neurons. The index of Re and Pr numbers were close to 40% 
but the both ratios contributed less than 20%.  

Observations can also be made using Equation (2). From 
Equation (2) and the range of variables mentioned in the 
previous section, it is obvious that Reynolds and Prandtl 
numbers are both important. However, it is not possible to tell 
which one is more important than the other by simply judging 
the exponents of them. It is also obvious that x/D, and µb/µw are 
the least important variables. According to the range of the 
data, the value of the terms (x/D)-0.0054 and (µb/µw)0.14 in 
Equation (2) are forced to a value very close to one; hence they 
made less contribution to the Nusselt number. Theoretically, for 
turbulent flow, the thermal entry length is usually very short 
and the entrance effect is insignificant. Moreover, from Sieder 
and Tate (1936), the data in the turbulent region show little 
variation between µb and µw, firstly, because fluids which give 
turbulent flow seldom have a large temperature coefficient of 
viscosity and secondly, because the heat transfer rates are high, 
preventing large temperature differences. Therefore, both the 
terms (x/D)-0.0054 and (µb/µw)0.14 act as correction factors to 
make the correlation more accurate. In consequence, the results 
are absolutely identical to the physical phenomena and the 
observations from Equation (2). 
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Figure 5: The percent contribution from ANN training for 
different dimensionless numbers to Nusselt number by 
adjusting the iterations and the number of neurons; (a) 5 
neurons, (b) 6 neurons, (c) 7 neurons, (d) 8 neurons. Each data 
point is the average value from 10 trainings. 

EXTENDED ANALYSIS IN LAMINAR FLOW REGION 
The data in the laminar region is more complicated since 

the entrance effect, buoyancy and variation of properties are all 
important. Based on Figure 3, it is obvious that, irregardless of 
which inlet configuration used, secondary flow requires a 
certain length to develop. Therefore, we can classify that the 
developing flow near the entrance is dominated by forced 
convection. When the flow is further down stream, mixed 
convection is the dominant mode of convection. Because of 
that, it would be reasonable for us to consider the first 
dimensionless number group, RePrD/x, in Equation (1) as the 
Graetz number to take care of the forced convection heat 
transfer in the thermally developing region. The second 
dimensionless group, GrPr, in Equation (1) by definition is the 
Rayleigh number, Ra, which is a dimensionless number 
considering the effect of free convection. Careful observation 
of Equation (1) reveals that the formation of the equation is in 
fact the superposition of a forced and a free convective heat 
transfer correlation. For the last dimensionless group, the 
viscosity ratio term is for the correction of the variation of 
physical properties due to heating. Since the wall-to-bulk 
temperature difference is much higher in the laminar region, 
this term is also important. Therefore, Equation (1) becomes: 

 
[ ] 0.14

wb
1/30.75

l )/µ(µ0.025(Ra)(Gz)1.24Nu +=       (7) 
 
 The advantages of the above arrangement are (1) the 
physical meanings of the dimensionless parameters are more 
clear and (2) the factor analysis procedures can be simplified 
because of the number of dimensionless variables to be 

considered reduces from 5 to 3. Therefore, our factor analysis 
regarding the contributions from different dimensionless 
numbers in convective heat transfer is based on Gz, Ra and 
µb/µw. As shown in Figure 3, at small length-to-diameter ratios 
(near the tube entrance), the free convection is still not 
established and the flow is dominated by the forced convection 
based on the heat transfer coefficient ratios (ht/hb > 0.8). 
Therefore, the Ra number is relatively not important for the 
heat transfer in that region. However, as the length-to-diameter 
ratio is increased (20-70 diameters passed the tube entrance 
depending on the inlet configuration), the heat transfer mode is 
dominated by mixed convection and Ra number becomes an 
important parameter. 
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Figure 6: The percent contribution from ANN training for 
different dimensionless numbers to Nusselt number by 
adjusting the iterations and the number of neurons for forced 
and mixed convection; (a) 4 neurons, (b) 5 neurons, (c) 6 
neurons, (d) 7 neurons. Each data point is the average value 
from 10 trainings. 

 
For the analysis of the laminar flow data, a total of 546 

data points from three different inlet configurations are divided 
into two sets, namely forced convection data with ht/hb > 0.8 
and mixed convection data with ht/hb < 0.8. Out of the 546 data 
points, 212 data points are for the forced convection and the 
remaining data points are for the mixed convection. In the 
ANN training, the gradient method, number of hidden neurons 
employed, and the number of iterations used are necessary to 
be determined. In accordance with the analysis for the turbulent 
data, the steepest descent gradient algorithm gives consistent 
results so it was also used for the laminar data. For 
determination of the number of iterations and hidden neurons, 
the data sets were trained with 4 to 7 neurons. The number of 
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iterations for each training ranged from 1,000 to 100,000 times. 
The increment of iterations is set as 2,000 when the number of 
iterations is from 1,000 to 10,000. The increment of the 
iterations is set as 10,000 when the number of iterations is from 
10,000 to 100,000. As shown in Figure 6, the trend of the 
contribution of each variable is consistent irregardless of how 
many hidden neurons are employed. After 50,000 iterations, the 
contribution curves of each variable are very well established.  
 In summary, based on the observations made above, the 
number of iterations used is selected as 50,000 and the number 
of neurons used is arbitrarily selected as 6. Moreover, the form 
of the ANN correlation is given by Equation (3). With the 
establishment of the ANN correlation, the index of contribution 
according to the above mentioned criteria can then be 
computed. For reliability purposes, ninety percent of the total 
data points were used for training and the remaining data is for 
verification. The initial value of the free parameters (weights 
and biases) is randomly selected within ±1. For satisfying the 
log-sigmoid transfer function, the normalized input variables; 
Reynolds number, Prandtl number, length-to-diameter ratio, 
and viscosity ratio are arranged into the input vector, p: 
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In Equation (3), the dependent output is the Nusselt number for 
the turbulent heat transfer data. The w1, w2, b1, b2 terms used in 
Equation (3) are constant matrices or scalars. Their numerical 
values are shown in the followings: 
 
For forced convection: 
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For mixed convection: 
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As shown in Table 2, the total number of data points for forced 
convection is predicted within -12.19% to 16.96% and those 
for mixed convection are predicted within -11.12% to 8.51%. 
Over 97% of the data are predicted within ±10% deviation for 
the two convection modes. For forced convection, about 77% 
of all the data (164 data points) are predicted within ±5% 
deviation and the absolute mean deviation is 3.56%. For the 
mixed convection, about 92% of all the data (308 data points) 
are predicted within ±5% deviation and the absolute mean 
deviation is 2.4%. As compared to the previous laminar 
correlation, significant improvement is observed (see Table 1).  

 
Table 2:  Prediction Results for the Improved Correlation by 

Using ANN 
 

Forced Convection 

Data Point 
Distribution 

No. of Data 
within ±10% 

No. of Data 
within ±5% 

Abs. 
Mean 

Dev. (%) 

Range of 
Dev. Abs. 

(%) 
Total data points 

(212 pts.) 207 164 3.56 -12.19% 
 to 16.96% 

Training data 
points 

(191 pts.) 
186 147 3.57 -12.19% 

 to 16.96% 

Testing data points 
(21 pts.) 21 16 3.63 -7.70%  

to 9.58% 
Mixed Convection 

Data Point 
Distribution 

No. of Data 
within ±10% 

No. of Data 
within ±5% 

Abs. 
Mean 

Dev. (%) 

Range of 
Dev. Abs. 

(%) 
Total data points  

(334 pts.) 333 308 2.40 -11.12% 
 to 8.51% 

Training data 
points 

(300 pts.) 
299 279 2.40 -11.12% 

 to 8.51% 

 Testing data 
points 

(34 pts.) 
34 29 2.45 -5.21%  

to 6.91% 

 
For the calculation of the index of contribution for each 
variable, Equations (4) to (6) are employed according to the 
weight matrices, w1and w2 shown above. The computation 
process is as follows:  

i. For each hidden neuron k, the absolute value of the 
hidden-output layer connection weight is divided by the 
summation of the hidden-output layer connection weight. 
The is computed for each neuron as follows: kQ
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Heat 
Transfer 

Mode 

Hidden 
Neuron 1 

Hidden 
Neuron 2 

Hidden 
Neuron 3 

Hidden 
Neuron 4 

Hidden 
Neuron 5

Hidden 
Neuron 6

Forced 
convection 3.18 1.14 1.37 1.05 0.47 0.09 

Mixed 
convection 3.21 2.01 0.50 0.30 1.44 0.12 

 
ii. For each hidden neuron k, multiply the by the absolute 

value of the hidden-input layer connection weight. Then, 
sum up the values to obtain the for each input variable p

kQ

jP j : 
 

Heat Transfer Mode Gz Ra µb/µw

Forced convection 2.25 0.38 1.53 

Mixed convection 2.20 1.21 1.29 

 
iii. Compute the index of contribution in percentage by 

dividing by the sum of the corresponding to each input 
variable. Finally, the index of contribution for each 
variable is established as: 

jP jP

 
Heat Transfer Mode Gz Ra µb/µw

Forced convection 53.9% 9.2% 36.9% 

Mixed convection 46.8% 25.7% 27.5% 
 
From the above table, it can be seen that for the forced 
convection data, Gz is the most important dimensionless 
parameter since the forced convection data is all very near the 
entrance of the tube. On the other hand, Ra is the least 
important dimensionless parameter since near the tube 
entrance; the secondary flow effect has not developed yet. For 
the mixed convection data, Gz is again the most important 
dimensionless parameter since for laminar heat transfer; the 
thermal entry length is long. Compared to the forced 
convection data, Ra in this case is also important since the 
secondary flow effect has established. For both forced and 
mixed convection cases, the viscosity ratio is important due to 
the significant effect of variation of physical properties. 
Therefore, it can be concluded that the index of contribution 
calculated based on the proposed method completely agrees 
with the physical meanings.  

CONCLUSIONS 
In this study, the factor analysis using ANN proposed by 

Tam et al. (2006) is applied to the laminar dataset. The data in 
the laminar region is more complicated since the effects of 
entrance, buoyancy and variation of properties are important. 
Graetz number, Rayleigh number and bulk-to-wall viscosity 
ratio were selected and the percent contribution from each of 
them was analyzed using the proposed method. It is found that 
the Gz number is the most important variable in the laminar 
flow region. Moreover, the Ra number contributes significantly 
in the mixed convection region. Therefore, the factor analysis 

method using ANN can be applied not only in the turbulent but 
also in the laminar region. Application of this method to more 
complicated heat transfer problems to further verify its 
capability is recommended.  
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