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COMPARATIVE STUDY OF WEIGHTED UPWIND AND
SECOND ORDER UPWIND DIFFERENCE SCHEMES

Yousef H. Zurigat and Afshin J. Ghajar
School of Mechanical and Aerospace Engineering, Oklahoma State University,
Stillwater, Oklahoma 74078

An extensive survey of difference schemes for approximating the advection terms in the
conservation equations of fluid flow and heat transfer was conducted. In this study, two
of these schemes, the weighted upwind and the second-order upwind difference schemes
(WUDS and SOUDS, respectively), were tested by application to four problems, two of
which have not previously been used. The problems involve two-dimensional forced and
mixed convection and the predictions were compared with experimental data and/or an-
alytical solutions. The results concur with previous findings and indicate that the SOUDS
produces less numerical diffusion than the WUDS and gives predictions in closer agreement
with the analytical or experimental data.

INTRODUCTION

Predictions of fluid flow and heat transfer using finite-difference methods are
seriously affected by numerical diffusion, instability, and computational cost. Therefore,
the choice of the numerical procedure and the discretization scheme are critical to the
success and validity of the results.

Many computer codes at present employ discretization schemes based on comnven-
tional upwind or donor cell differencing of convective terms. This gives rise to a dis-
cretization error (called numerical diffusion) that limits the accuracy and usefulness of
predictions. Numerical diffusion has been shown [1] to be significant compared to the
physical diffusion. Therefore, it is desirable to reduce these errors so as to enable computer
codes to be used as design tools.

The upwind scheme gained popularity among computational fluid practitioners
because it is superior to the central difference scheme when the local grid Péclet number
is large [2]. However, it was soon recognized that the stability furnished by the upwind
scheme was achieved at the expense of accuracy. As a result, thermal hydraulic computer
predictions generally produce higher levels of diffusion and mixing than are seen exper-
imentally. Therefore, numerical diffusion is often found to dominate the effects of tur-
bulent diffusion. Hence, turbulence modeling will be overshadowed without the removal
of numerical diffusion.
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NOMENCLATURE
Cp specific heat at constant pressure 14 index for Cartesian (¢ = () or ¢cylindrical
¢ acceleration of gravity (¢ = 1 coordinate
H effective height between tlow inlet and (1] How dircction angle
outfet T8 absolute viscosity
k molecular thermal conductivity I3} density
! length scale scalar-dependent variable (e.g.. P or T)
P pressure
Pc  grid Péclet number ( =‘u'~'l/| ) Subscripts
Pr Prandtl number (= pC,ik)
r radius N
. E cast
! time T, . . . .
. . . , i. j  indices of computational grid location
! dimensionless time (= ViiH) . . . N
in  at the inlet or inflow
T temperature - .
o R 0 initial reference state
" velocity in the v or - direction .
Co . 1 of the u cell
w®  characteristic velocity
Lo LT W west
v velocity in the v direction
v average vertical velocity
W tank width Superscripts
vo v Cartesian or eylindrical (v = 1) coordinates
« donor cell paramecter T of the T eell
B coctticient ot thermal expuansion P of the P eell
1= (py — pripotT = T} v of the v celt
I diffusion coetficient u of the « cell

SURVEY OF DIFFERENCE SCHEMES

The increasing demand for accuracy in numerical computations has led to the

development of several new schemes (see

Tuble 1)

. A number of comparative studies of

these schemes has been conducted by application to flow situations with well-established
analytical or numerical solutions or with experimental data. Table 2 summarizes the
performance of different schemes applied to the flow problems listed in Table 3.

Tahle 1 Partial List of Discretization Schemes Devised by Various
Investigaiors
No. Numerical scheme Contributor
1 Central difference
2 Upstream (upwind) ditference
3 Hybrid (central and upwind) Spalding |2}
4 Weighted upwind ditference Hivt et al. 3]
5 Skew upwind ditterence Ruithby |4}
6 Skew upwind weighted difference Ruithby [4}
7 Quadratic upwind interpolation Leonard |5]
8 Locally analytical differencing Wong and Raithby [6]
9 Power-taw ditference Patankar 7]
10 Selective grid refinement approach McGuirk et al. 8]
11 Donor cell corrective scheme Huh ct al. {1]
12 Second-order upwind ditferencing Shyy [Y]
13 Madificd central ditference scheme

with controlled numerical diftusion

Runchal [ 0]
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Table 2 Comparative Studices of Performance of Various Discretization Schemes from Table | as Applied
to Various Fluid Flow Problems from Table 3

Contributor

Discretization schemes
(Table 1) (numbers in
parentheses refer to
problems from Table 3)

Main findings reported by the contributor

Runchal [11]

Raithby [4]

Smith and Hutton [12]
McGuirk et al. [8]

Claus et al. [13]

Syed and Chiappetta
[14]

1,2,3.(1)

2.5.(3)
1,2,3,4,5.7,9, (1)

10. (19)
5, 5%, 7,(2)
3,5%, 7,4

w

3,5%,7,(6)

3,5%,7,.(D)

3,5%,7,(12)
3,5%,7,(13)

3,5%,7,(14)
3,5%,7,(15)

3 is the best from convergence and accuracy
points of view.

5 and 6 reduce the error greatly, no stability
problems.

Results with 5 and 6 are angle dependent but
generally better than 2. Overshoot and
undershoot may occur with 5 and 6. Number
of iterations for 5 and 6 is larger.

5 gave much better predictions.
No single scheme emerged as the best.

Grid-independent solution can be obtained
using this method.

Solution is angle dependent. For 8 up to
15°, 7 is superior. For 8 > 15°, 5 and 5%
are superior.

7 is superior to 3 and 5*. It responds to grid
refinement. 3 and 5* are highly inaccurate.
At ® = 40° 5* and 7 are more accurate
than 3. At 6 = 25°, 5% is better than 7. 7
displays unphysical oscillations. It is also
slower to converge. At = 0, all schemes
are good.

5% and 7 perform equally well and they are
superior to 3. 7 is'less sensitive to grid
refinement.

7 is unstable with fine mesh (uncompatible
with TEACH solver).

5% is the best.

In the initial region with coarse grid the
results do not agree with data regardless of
the scheme used. With fine grid 7 was
excluded. 3 and 5* are comparable.

7 is more accurate than 3 and 5*.

5* reduces numerical diffusion considerably

but there is a disagreement with
experiments.

(Table continues on next page)
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Table 2 (continued)

Contributor

Discretization schemes
(Table 1) (numbers in
parentheses refer to
problems from Table 3)

Main findings reported by the contributor

~ Huang et al. [15]

Runchal et al. [16]

Sharif and Busnaina

{7

5,7,8,9,(

5,7,8,9,(2)

5.7.8,9, (4

5,7,8,9,(16)

5,7,8,9, (7

5,7,8,9,(18)
3,13,(1,2,5,6,7, 8,

9,10, 11)

4,5,7, 12, (2)

4,5,7, 12, (13)

5, 7, and 8 are much better than 9, with 7
being the worst among the best.

9 gives maximum false diffusion for § =
45°, 5 gives exact solution. 7 and 8 are
superior to 9 but they suffer from overshoots
and undershoots. For other flow angles 5
gives rise to more serious overshoots than 7
and 8.

7 performs exceptionally well. 5 performs
poorly, 8 fails to converge.

At Pe = 5, 7 is superior. At low Raleigh
number, differences between the schemes
were minor.

Predictions of 5 and 7 in regions of steep
velocity gradients are much closer to the true
behavior than those of 8 and 9. However, 5
produces oscillations in velocity.

All schemes but 5 gave excellent agreement.
5 and 9 fail to conserve total pressure.

13 is much better in all the cases except in
case 5 where the hydrodynamic results were
better than 3 but the temperature results
were less accurate than 3.

4 produces maximum numerical diffusion.
For all Péclet numbers 5, 7, and 12 produce
less numerical diffusion and have a
comparable accuracy. At § = 45° 5 is the
best. 7 and 12 produce overshoots with the
maximum occurring at § = 26.6°.

For 8 = 26.6°, 5 introduces the least
numerical diffusion but exhibits significant
oscillation for [Pe| = =, 4 has the most
numerical diffusion. 12 introduces moderate
numerical diffusion and oscillation. For § =
45°, 7 introduces significant oscillations.

“5* is a bounded version of 5.

As shown in Table 2, the results reported by different investigators show that the
performance of different schemes is problem dependent. For example, the predictions
with the skew upwind difference schemes (SUDS; schemes 5 and 6 of Table 1) are
dependent on the angle the flow makes with the grid lines but they both produce low
levels of numerical diffusion [4]. However, they may produce overshoots and undershoots
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[4, 17]. On the other hand, while the locally analytical differencing scheme performs
well when applied to problem I (see Table 3), it fails to converge when applied to problem
4 [15]. However, most of the studies cited in Table 2 suggest that the second-order upwind
difference scheme (SOUDS), the SUDS, and the quadratic upwind interpolation difference
scheme (QUIDS) offer better accuracy than the upwind difference scheme or its derivative,
the weighted upwind difference scheme (WUDS).

Further testing of two of the schemes is presented here, with extension of the work
to convection flows in Cartesian and cylindrical coordinates. These comparisons were
conducted in laminar flow—a convenient test ground. The SOUDS and the WUDS were
implemented to solve two-dimensional mixed convection flow problems and the predic-
tions were compared with analytical solutions and/or experimental data. Results concur
generally with previous recommendations and the SOUDS scheme was found to be
superior in the flows investigated.

Table 3 Fluid Flow Problems Tested by Different Finite-Difference Discretization Schemes

No. Test problem Available solution
1 Fluid in a steady state of solid body rotation closed form
2 Transport of a step change in scalar in a two-dimensional
uniform velocity field at an angle Closed form
3 Interaction of two parallel two-dimensional slot jets Experimental
4 Square cavity with a moving wall Numerical (very fine grid)
5 Square cavity with a moving heated wall Numerical (very fine grid)
6 Laminar flow over a backward facing step Experimental
7 Turbulent flow over a backward facing step Experimental
8 Uniform constant velocity flow in straight pipe with :
exponential temperature distribution Closed form
9 Same as 8 above with spatially varying heat source Closed form
10 Recirculating flow with temperature source in a prescribed
recirculating velocity field in a square cavity Closed form
1] Step-like discontinuity in a recirculating flow Numerical (very fine grid)
12 Swirling flow downstream of a sudden expansion None (reference is made to
(laminar) turbulent experiments)
13 Coannular nonswirling turbulent flow Experimental
14 Coannular swirling turbulent flow Experimental
15 Cross-flow multiple jets in duct (three-dimensional) Experimental
16 Laminar buoyancy-driven cavity flow Numerical (best available)
17 Laminar impinging jet None
18 Irrotational corner flow Closed form
19 Flow downstream of a confined axisymmetric baffle Experimental
20 Laminar flow with various inlet flow angles None
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MATHEMATICAL MODEL

The flow is governed by the well-known conservation equations of mass, momen-
tumn, and energy. It is assumed that the flow is two-dimensional and laminar and that the
viscous dissipation is negligible. Also the Boussinesq approximation is invoked; that is,
the density is assumed constant except in the buoyancy term of the momentum equations.
Then, the governing equations written in primitive variables and in conservative form in

both Cartesian ({ = 0) and cylindrical coordinates ({ = 1, x = r) reduce to:

Continuity:

u and v Momentum:

du duu Juv u-
—+—+—+{—
Jat  ox ay x

1 P 4 ] ] ]
__Lop o (pou) 9 (pdu) | (0w u
pPo 0X 0dx \pg dx dy \pg 9y Xpg \9x x

v duv 9Ivv uv
— .__+___.+€_.__
ot odx ay x
d
L PP LA WA (314 B0
po 8y 7 ax\po 9x/ 9y \po dy/ " xpy dx
Energy:

oT duT ovl
—+—+—— +-ul
at dax ay X

a( k aT) ) < k aT) k oT
= — — ] + = — ]+ -
dx \poCp 9x ay \poCp 9y xpoCp dx

SOLUTION PROCEDURE

(1

2

4)

The two-dimensional plane or axisymmetric flow domain is divided into rectangular
cell divisions, with nonuniform spacing (see Fig. 1). The location of the field variables
P, u, v, and T are shown for an arbitrary i,j cell. It is seen that P and T are cell centered
while the u and v velocities are located on the faces of the cell. This staggered arrangement
eliminates the need for boundary conditions on pressure and allows for ease in setting
the boundary conditions on velocities. A layer of fictitious cells is added on all sides of
the computational domain to facilitate the application of momentum and thermal boundary
conditions. The staggered arrangement described above gives rise to three different control
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AN

4

) u cell\

o]

7w il i

nodal variables u, v, P, and 7, ij notation,
i and the & (7, P), u, and v cells.

a1V = P=T u Fig. 1 Grid layout showing location of the
AR uri e ax} g y I

7

volumes: the u cell, the v cell, and the ¢ cell for solving the x (or r) momentum, the
y momentum, and the scalar transport equations, respectively (see Fig. 1).

Approximation of the advection terms requires special treatment that has been the
topic of numerous studies. The explicit formulation of Sharif and Busnaina [17] for
discretizing the conservation equations in Cartesian coordinates is adopted and extended
to axisymmetric cylindrical coordinates. Standard differencing techniques of Hirt et al.
[3] are used except for the advection terms, which are approximated differently for the
WUDS and SOUDS methods (see [17, 18]). To illustrate the difference between the two
methods, the finite-difference discretization expressions for the advection term (duu/dx); ;
in Eq. (2) are presented in the appendix at the end of the paper.

In examining Egs. (1)—(4), two observations are in order:

1. The presence of temperature-dependent source term: the buoyancy term in Eq.
(3) results in coupling between velocity and temperature (i.e., momentum-to-
energy coupling). On the other hand, velocities appearing in the advection terms
in the energy equation [Eq. (4)] result in the converse energy-to-momentum
coupling. This bidirectional coupling generally requires an iterative solution.
However, the explicit formulation described above requires a small time step,
which results in small temperature changes and buoyancy forces thereafter.

2. The absence of a separate equation for pressure poses a problem in calculating
the flow field variables. The pressure appears in both the u and v momentum
equations. This velocity-pressure coupling requires special treatment since the
accuracy of the computed pressure field determines that of the computer velocity
field, which in turn determines the satisfaction of continuity requirements. Thus
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for a given initial guess of the pressure field or for that calculated from a previous
time step, the calculated velocity field will not, in general, satisfy the continuity
equation. An iterative adjustment of the cell-centered pressure and the cell-
boundary velocities at each computational cell is employed, sweeping over the
computational domain repeatedly until the absolute value of the residual cal-
culated from the continuity equation at each cell becomes vanishingly small,
within a prescribed tolerance. General and special boundary conditions are ap-
plied at the beginning of each iteration of the above procedure (see [3]).

RESULTS AND DISCUSSION

The computer code that was developed based on the procedure described above
was tested by application first to simple flow problems and then to two-dimensional mixed
convection problems.

Uniform Flow with a Step Change in Temperature

Consider the plug flow situation with a constant velocity and a sudden change in
temperature at the inlet. The flow is considered to be one-dimensional and only a few
terms in the governing energy equation are retained while the velocity v is constant and
u = 0. This problem has been widely used as a test problem to investigate the numerical
diffusion resulting from the application of different numerical schemes. In this case,
however, the cross-flow diffusion is absent, leaving only the truncation error diffusion
added to the physical diffusion.

The stability and accuracy of the WUDS requires a certain amount of upstream
differencing to maintain both stability and a low level of numerical diffusion (donor cell
parameter o). Figure 2 shows the transient response to a step change in temperature for
different values of «. The temperature is monitored at y/H = 0.3417. Oscillations are
persistent even for & = 0.35, which falls within the range 1 > o > max[ulAt/Ax, vAt/
Ay], the criterion given by Hirt et al. [3], the lower range being 0.15. This indicates
that the mentioned criterion is not universal and the value of a that produces an oscillation-
free solution should be chosen by testing. For o = 0.5, no oscillations are present.

When solving the same problem using SOUDS, the solution, while being stable,
exhibits undershoot (see Fig. 3). To suppress the undershoot and/or overshoots, a simple
procedure known as ‘‘bounding”” [17] produces a wiggles-free solution as shown in Fig.
3. In this bounding procedure, the calculated value for a particular cell is compared to
the calculated values of its surrounding cells and reset as follows:

d)max if d)i.j > ¢max
cbi.j = d)i.j lf d)min < (\bi.j < d)max (5)
(bmin if (bi,j < d)min V
where

Prax = max{cbi-—l.j’ ¢i+|.jv ¢i.,‘—1~ ¢’i.j+|} (6)
Prin = min{d)i—l.ja ¢i+1.j» ¢i.j~|» ¢i,j+|} (7
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Fig. 2 Transient response to a step change in temperature in plug flow (cylindrical) using WUDS
with different values of upstream differencing parameter o.

Figure 4 compares the solutions shown in Figs. 2 and 3 and the analytical solution.
It is seen that the SOUDS introduces less numerical diffusion as compared with WUDS
(a = 0.5). Note that in these calculations Pe = 422, grid size = 1.83 cm X 0.91 cm,
time step = 0.2 s, and Pr = 5.55.

Uniform Flow at 45° to the Grid Lines with a Step Change in
Temperature

Consider the flow situation shown in Fig. 5. Two streams at uniform known identical
velocities, but different temperatures, cut through the computational domain at 45°. This
is another test problem widely used in computational fluid dynamics since both the
truncation and cross-flow diffusion are present.

Figure 6 shows the temperature profile monitored at the diagonal of the flow domain.
It can be seen that the SOUDS, while exhibiting overshoots and undershoots, substantially
reduces the numerical diffusion as compared with WUDS. The exact solution shown in

Fig. 6 is an inviscid solution.

Mixed Convection Flow

Consider the problem of transient mixed convection flow in a thermal storage tank
shown in Fig. 7. The transient temperature profiles along the height of the tank were
monitored at x/W = 0.5. The solutions generated using WUDS and SOUDS are compared
to the predictions obtained by Chan et al. [19] who used WUDS with primitive variables
and the same grid configuration (see Fig. 8). In these calculations, Pe >> 2, grid size
= 3.56 cm X 3.56 cm, and time step = 2 s. A close agreement is seen to exist between
the present WUDS predictions and those of Chan et al. [19]. Moreover, the predictions
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Fig. 3 Transient response to a step change in temperature in plug flow (cylindrical) using SOUDS
with and without bounding.

of the SOUDS seem, in general, to exhibit less total diffusion, which implies less nu-
merical diffusion. The computer time for both methods is comparable, with SOUDS
converging slightly faster.

As mentioned earlier, the results of Chan et al. {19] were obtained using WUDS.
The slight disagreement between the present and published results could be due to several

1-00 1 i T )
~ 0.75¢ WUDS (« = 0.5) .
'l‘ BOUNDED SOUDS
c ANALYTICAL
£ o.50f .
0
|
£ o.2s} .
0.00 . . . .
0.0 0.6 0.8

Fig. 4 Comparison of bounded SOUDS and WUDS with the analytical solution for the case of Figs. 2
and 3.
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INITIAL TEMPERATURE
PROFILE

Fig. 5 Uniform flow at 45° to the grid lines with a step change in temperature.

1-00 1 T 1 T 1] 1 1 ‘ )

0.50} .

EXACT 1

: - SOLUTION ]

T N ]

< 0.00}

~0.50f .

~100 5601050 1150 150 1200
T/To

Fig. 6 Temperature profiles of two interacting parallel streams shown in Fig. 5 as cal-
culated with WUDS and SOUDS.
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\
— INFLOW

Iy . OUTFLOW —»

w 1

Fig. 7 System geometry for transient mixed convection flow problem [19].

reasons, for example, the choice of donor cell parameter ., the time step, the initialization
of the velocity field, and the convergence tolerance employed. All these factors affect
the solution obtained with WUDS.

The bounding of SOUDS does not seem to affect the solution greatly. Figure 9
shows the solutions with and without bounding. The undershoot, although small, is quite

1.0

---WUDS (a = 1.0)
L —— SOUDS (BOUNDED)
—-—CHAN et al.[19]

(T - TP/Tjpy = To)

y/H

Fig. 8 Predicted transient temperature profiles in thermal storage tank using
WUDS (o = 1.0) and SOUDS compared with results of | 19] at /W = 0.5.
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1.00

(T - To)/(T”'] - To)

0050
: " 100

Fig.9 Comparison of bounded and unbounded SOUDS predictions of transient
temperature profiles of mixed convection flow problem at x/W = 0.5.

clear. The dashed curves represent the solution shown in Fig. 8 with the scale being
slightly altered. The difference, excluding the undershoots, is not significant.

Application of the two methods to thermocline thermal storage [20] shows that the
performance of SOUDS is much better than WUDS. Figure 10 shows the predictions
compared with the experiment. The agreement between the predictions using SOUDS
and the experiment is satisfactory. A high level of numerical diffusion is seen when using
WUDS. Figure 11 shows the same trend. These calculations were carried out with Pe
= 387, grid size = 2.13 cm X 5.77 cm, time step = 0.15 s, and Pr = 4.5.

The results obtained indicate that the choice of the solution scheme is an important
factor in achieving realistic predictions. Based on the results discussed in the foregoing,

the SQUDS produces results in closer agreement with analytical and experimental data.

CLOSURE

Numerical diffusion resulting from difference approximation of advection terms in
the governing equations of fluid flow and heat transfer has been the subject of numerous
studies. Several difference schemes were devised by different investigators to reduce
numerical diffusion. The literature survey conducted in this study suggests that the SOUDS,
SUDS, and QUIDS offer a lower level of numerical diffusion and better accuracy than
the conventional upwind difference scheme or its derivative, the WUDS.

Testing of two of these schemes was conducted in this study by application to
forced and mixed convection flow problems. The SOUDS and WUDS were implemented
in a computer code, which was applied to solve the test problems discussed in the previous
section. The results indicate that the SOUDS produces predictions in closer agreement
with the analytical and experimental data than the WUDS. This confirms the previous
findings in the literature while using some test problems that have not previously been
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Fig. 10 Predictions of temperature profiles at the centerline in thermocline cy-

lindrical thermal storage tank comparing SOUDS, WUDS (@ = 0.7), and the
experiments of [20]. ‘
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T I
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0.75} t+ = 0.316_—— .
< o0t -
>
0.25} .
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~0.10 0.20 0.50 0.80 110

(T - TQ)/(Tm - To)

Fig. 11 Predictions of temperature profiles at the centerline in thermocline cy-
lindrical thermal storage tank comparing SOUDS, WUDS (a = 0.5), and the
experiments of [20].
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used. The advantage of SOUDS over WUDS was clearly demonstrated, indicating that
the choice of the difference scheme is critical to the validity of the predictions and design
assessments thereafter.

APPENDIX

In this appendix, the discretization expressions for the advection term (Quu/dx); ;
are derived for both WUDS and SOUDS methods. '

WUDS Method

Consider the u cell control volume shown in Fig. Al. The discretization of the
advected u velocity can be written as

duu Up Ug — Uy Uy
( ax )i.j Ax;f (A )

where ug , and uy , are the velocities at the east and west faces of the u cell correspond-
ingly. These are given by

ug, = 0.5y ; + uj) (A2a)
uw'u = 0.5(“1'!* + u,»_]'j) (A2b)

and #g and #y, assume different forms depending on the type of discretization considered.
coh

x - M o e v ara oiyam b
For example, in central difference scheme they arc given oy

le = Ug (A3a)

Uy = Uy, (A3b)

[ ! Vs.u

Ax; |
L—Ax‘f———

Fig. A1 Grid system showing the u cell and location of related velocities.
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which, when substituted in Eq. (Al), give the central difference form

(A4)

uu\ (U, + i ) = (uy; + wmy )?
ox /;; 4Ax!

For a fully upwind scheme the velocities 4z and dy, are expressed taking into account
the flow direction. This is done by analogy with the tank-and-tube model [7]. For u >
0 we have

Ug = ui‘j (ASa)
dw = Ui_ 1.j (ASb)
and for u < 0
ug = Uiyy,j (A5¢)
ﬁw = ui.j (ASd)

Substitution of Egs. (A5) in Eq. (A1) gives the upwind difference form. Thus for u >
0 we get

<6_ul_4) e o = (gt ouy gy
ij

ax 2Ax¢ (A6)
and for u < 0 we have

Juu _ Wipry + wp Dueyy — Wy + iy ug (A7)

ax )y 2Ax¢

The WUDS is obtained by combining Egs. (A4), (A6), and (A7) using a donor
cell parameter a, which assumes values between zero and unity [3]:

ouu ,5
—a? g = [(ui.j + u,-+l'j) + 0L|u,~_]~ + u,-+,_j|(u,~_j - ui+l.j)
=iyt u )P = ofuy |-y — w ))/AAXE (A8)
Equation (A8) reduces to Eq. (A4) for & = 0.0, to Eq. (A6) fora = 1.0 and u > 0,

and t_o Eq. (A7) for @ = 1.0 and u < 0. Sharif and Busnaina [17] have expressed iig
and &y in a form more suitable for implementation in a computer code. That is,

g = 0.5[u;; + wpy; + Gs)alu; = iy, )] (A9)
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where is = ug ,/|ug,|, and ug, is given by Eq. (A2a).
uyw = 0.5[u;_y; + u; + Gs)olu—y; — u; ;)] (A10)

Uw../|uw..| and uy , is given by Eq. (A2b).

where is

SOUDS Method

For the SOUDS method the discretization of the advected u velocity is also given
by Eq. (Al). The velocities & and #y appearing in the equation are derived as follows.

Depending on the flow direction, the velocities #g and iy are expressed in terms
of velocities upstream of the location of interest. For example, for u > 0, ig is expressed
in terms of u; ; and u;_, ;, and similarly, iy is expressed in terms of u;_y jand u;_, ;.
Thus, extrapolation for ig from u; ; and u;_, ; gives, for u > 0,

_ QAx; + AxiyDu; — Axiquioy

Ug 7Ax, (A1)
and for dy, from u;_, ; and u;_, ; gives
iy = QAx;_; + AJ;)AIZ_—II_J- — Axjui_y (A12)
Equation (A11) can be writien as
ug = (1 + rdu;; — iy (A13)
where r, = Ax;,/2Ax; = Axh;y/Ax;, and Axh;, = Bx;i /2.
Similarly for iy, we get
iw = (1 + rdui_yj — rli_y (A14)
where r, = Ax;/2Ax;_,= Axh/Ax;_,.
When u < 0, extrapolation for ig from u;,, ; and u;, ; gives
i = QAx;,, + Axi+2lz;;ii+:2,j = Ax;qUiya (A15)
and for ity from u; ; and u;,, ; gives
- (QAx;y + Axpu; j — Axiv;yy (A16)

Uw
2Ax;4;
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These equations can be rewritten as

ug = (L + ripy; — rltieq (A17)
where ry = Ax;/120x;,., = Axh;y/Ax; . Similarly for dy, we get

uy = (1 + rdu; — raupey (A18)

where ry = Ax;/2Ax;, = Axh/Ax;,,.
Equations (A13) and (A17) for g can be combined in one recurrence relation [17]

- as

ug = (1 + Nypia; — Mi_143ia) (A19)
Axh;
where r = —*L
Ax; 1 2iq
. 1 —is
ia =
2
. UE 4
is = ——
|uE,u|

Note that Eq. (A19) reduces to Eq. (A13) for u > 0 and to Eq. (A17) for u < 0.
In a similar fashion, Eqs. (A14) and (A18) for iy, are combined in the following
relation:

uw = (1 + Ny via; = Mi—243ia,) (A20)
where r = __ér_h_,__
AX;_ | 424
. I —is
ia =
2
. llwvu
is = —%
IuW,uI
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